Skip to main content

Trace information to Windows Azure Azure Tables

I saw that there are a lot of people that use tracing infrastructure that is offered by .NET framework to trace information in Windows Azure Tables. Basically, after we configure the configuration file, the only thing that we need to do is to call the Trace class and write data to it.
Trace.WriteLine(“Some  trace data”);
Trace.TraceWarning(“Some worning information”);
Trace.TraceError(“An error that appeared in the application.”);
We can do a log of thinks with this class. It is not something new.
In the configuration file of our application we need to add a new trace listener that is able to write all the trace information to Azure Tables.
<system.diagnostics>
    <trace>
      <listeners>
        <add type="Microsoft.WindowsAzure.Diagnostics.DiagnosticMonitorTraceListener, Microsoft.WindowsAzure.Diagnostics”  name="DiagToAzureTables"></add>
      </listeners>
    </trace>
  </system.diagnostics>
Next step is to add the listener to the trace listener collection each time when your application start. At this step I prefer to set auto-flush to true. In this way all the content will be send automatically to the trace and the risk to lose data when the machine is instable and crash is very low.
System.Diagnostics.Trace.Listeners.Add(myListener);
System.Diagnostics.Trace.AutoFlush = true;
On the internet you will find a lot of implementation of trace listener. The one that I prefer to use is the most common one. One of the implementation can be found in the following location http://www.wou.edu/~rvitolo06/WATK/Labs/WindowsAzureDebugging/Source/Assets/CS/AzureDiagnostics/TableStorageTraceListener.cs
If we check the Azure Tables of our account we will see that a new table was created with the following structure:
  • PartitionKey - D10 of event timestamp >> 30
  • RowKey - D19 of event timestamp
  • EventTickCount – event timestamp
  • Level - event type
  • EventId – event id,
  • Pid - event process id
  • Tid - event thead id
  • Message - event message
After a time you will observe that the EventTickCount can have different values, that are not orders based on the timeline. This is happen because the event timestamp is based on Stopwatch.GetTimestamp() method. This method don’t guaranty to us that will get a higher value in time. The purpose of Stopwatch is to measure time interval and calling GetTimestamp method return the current value of the counter (this is not correlated with the current date of the system) -
is correlated to the time when the system/process have been started.
Remarks: Base on the hardware configuration we can have a frequency tick per second or per nanoseconds. We can determine what is the frequency using StopWatch.Frequency.
If we want to order events based on the event tick count, we need to be aware that this will be valid only for events that were generated by the same processor (Pid). For different processor on the same machine the EventTickCount can be different.
Never try to order all the event of a Trace table from Windows Azure based on the EventTickCount. You can use it in combination with Pid. Also, the TimeStamp column of Azure Table store the time when the message was written to Azure Table and not the moment when the event was generated.

Comments

  1. Nice, but why would want somebody to do this, instead of using the built-in Diagnostics Monitor, which anyway will periodically transfer the collected data to azure tables? (http://msdn.microsoft.com/en-us/library/windowsazure/hh411548)

    I wouldn't want to have an Azure application that will usually have hundreds of role instances, all writing directly to a table storage service ..

    ReplyDelete

Post a Comment

Popular posts from this blog

Windows Docker Containers can make WIN32 API calls, use COM and ASP.NET WebForms

After the last post , I received two interesting questions related to Docker and Windows. People were interested if we do Win32 API calls from a Docker container and if there is support for COM. WIN32 Support To test calls to WIN32 API, let’s try to populate SYSTEM_INFO class. [StructLayout(LayoutKind.Sequential)] public struct SYSTEM_INFO { public uint dwOemId; public uint dwPageSize; public uint lpMinimumApplicationAddress; public uint lpMaximumApplicationAddress; public uint dwActiveProcessorMask; public uint dwNumberOfProcessors; public uint dwProcessorType; public uint dwAllocationGranularity; public uint dwProcessorLevel; public uint dwProcessorRevision; } ... [DllImport("kernel32")] static extern void GetSystemInfo(ref SYSTEM_INFO pSI); ... SYSTEM_INFO pSI = new SYSTEM_INFO(...

How to audit an Azure Cosmos DB

In this post, we will talk about how we can audit an Azure Cosmos DB database. Before jumping into the problem let us define the business requirement: As an Administrator I want to be able to audit all changes that were done to specific collection inside my Azure Cosmos DB. The requirement is simple, but can be a little tricky to implement fully. First of all when you are using Azure Cosmos DB or any other storage solution there are 99% odds that you’ll have more than one system that writes data to it. This means that you have or not have control on the systems that are doing any create/update/delete operations. Solution 1: Diagnostic Logs Cosmos DB allows us activate diagnostics logs and stream the output a storage account for achieving to other systems like Event Hub or Log Analytics. This would allow us to have information related to who, when, what, response code and how the access operation to our Cosmos DB was done. Beside this there is a field that specifies what was th...

Cloud Myths: Cloud is Cheaper (Pill 1 of 5 / Cloud Pills)

Cloud Myths: Cloud is Cheaper (Pill 1 of 5 / Cloud Pills) The idea that moving to the cloud reduces the costs is a common misconception. The cloud infrastructure provides flexibility, scalability, and better CAPEX, but it does not guarantee lower costs without proper optimisation and management of the cloud services and infrastructure. Idle and unused resources, overprovisioning, oversize databases, and unnecessary data transfer can increase running costs. The regional pricing mode, multi-cloud complexity, and cost variety add extra complexity to the cost function. Cloud adoption without a cost governance strategy can result in unexpected expenses. Improper usage, combined with a pay-as-you-go model, can result in a nightmare for business stakeholders who cannot track and manage the monthly costs. Cloud-native services such as AI services, managed databases, and analytics platforms are powerful, provide out-of-the-shelve capabilities, and increase business agility and innovation. H...