Skip to main content

Task.Yield(...), Task.Delay(...)

I think that a lot of person already heard about these new methods. In this post I want to clarify some things about these new methods that I saw that are not very clear.
We will start with Task.Yield(). The book definition of this method is: “Creates an awaitable that asynchronously yields back to the current context when awaited”. Let see what does it means in reality.
Yield gives us the possibility to leave the current async code (method or lambda expression) and allow other code to run in the underlying thread. Usually this is used when we have long running code that is executed in events (on main UI thread for example). In this case we want to allow other code to be executed on the UI thread. For this purpose the Yield method can be called. The rest of the function that need to be executed is posted back and will be executed after other messages that were waiting were executed.
For example we can have a for in an event handler that process items for a list. To permit the UI to execute not only our code we can use Yield.
public async void StartButton_Click(...)
    for( int i=0; i < list.Count; i++)
        await Task.Yield();
We use await in front of the Yield() because we want to wait until the other messages are processed. On the other side, we can use this method when our application uses threads from ThreadPool. If an action execute for long time, you don’t want other thread to block and wait for that current action. In this situation, using Yield() can permit other actions from the queue to be executed. In this way all the actions will be executed.
In background this method resumes the current action. We can compare this method to be something similar to a pause. When Yield() is called, the remaining action is posted back to the current context (it can be the TaskScheduler.Default or SynchronizationContext). After the rest of the code is executed, the rest of our action is resumed.
When you are working with tasks, especially when you want to simulate some behavior you will need a method to put a task to sleep. Thread.Sleep cannot be found anymore (for Metro style app). This method would put the thread on sleep, but we don’t want to freeze the UI thread or block another thread. Other actions could be executed on this thread.
For this purpose Task.Delay(…) was introduce. We can specify a delay time when the task will be suspended. Other tasks will be able to be executed on that read. In this way all the resources will be used at maximum. Optionally, you can specify a cancelation token that will be used if the task is canceled and stop the delay.


  1. Do not rely on await Task.Yield() to keep a UI responsive!


Post a Comment

Popular posts from this blog

ADO.NET provider with invariant name 'System.Data.SqlClient' could not be loaded

Today blog post will be started with the following error when running DB tests on the CI machine: threw exception: System.InvalidOperationException: The Entity Framework provider type 'System.Data.Entity.SqlServer.SqlProviderServices, EntityFramework.SqlServer' registered in the application config file for the ADO.NET provider with invariant name 'System.Data.SqlClient' could not be loaded. Make sure that the assembly-qualified name is used and that the assembly is available to the running application. See for more information. at System.Data.Entity.Infrastructure.DependencyResolution.ProviderServicesFactory.GetInstance(String providerTypeName, String providerInvariantName) This error happened only on the Continuous Integration machine. On the devs machines, everything has fine. The classic problem – on my machine it’s working. The CI has the following configuration: TeamCity .NET 4.51 EF 6.0.2 VS2013 It see

Entity Framework (EF) TransactionScope vs Database.BeginTransaction

In today blog post we will talk a little about a new feature that is available on EF6+ related to Transactions. Until now, when we had to use transaction we used ‘TransactionScope’. It works great and I would say that is something that is now in our blood. using (var scope = new TransactionScope(TransactionScopeOption.Required)) { using (SqlConnection conn = new SqlConnection("...")) { conn.Open(); SqlCommand sqlCommand = new SqlCommand(); sqlCommand.Connection = conn; sqlCommand.CommandText = ... sqlCommand.ExecuteNonQuery(); ... } scope.Complete(); } Starting with EF6.0 we have a new way to work with transactions. The new approach is based on Database.BeginTransaction(), Database.Rollback(), Database.Commit(). Yes, no more TransactionScope. In the fol

GET call of REST API that contains '/'-slash character in the value of a parameter

Let’s assume that we have the following scenario: I have a public HTTP endpoint and I need to post some content using GET command. One of the parameters contains special characters like “\” and “/”. If the endpoint is an ApiController than you may have problems if you encode the parameter using the http encoder. using (var httpClient = new HttpClient()) { httpClient.BaseAddress = baseUrl; Task<HttpResponseMessage> response = httpClient.GetAsync(string.Format("api/foo/{0}", "qwert/qwerqwer"))); response.Wait(); response.Result.EnsureSuccessStatusCode(); } One possible solution would be to encode the query parameter using UrlTokenEncode method of HttpServerUtility class and GetBytes method ofUTF8. In this way you would get the array of bytes of the parameter and encode them as a url token. The following code show to you how you could write the encode and decode methods.