Skip to main content

Java Script code refactoring - hands on code

Let's see how we can create a mechanism that based on some flags; it will able to determine the status of some objects. The first version of code would look like this:
ItemStatus = {
    Status1: "Status1",
    Status2: "Status2",
    Status3: "Status3"
}();

ItemTypes = {
    Item1: "Item1",
    Item2: "Item2",
    Item3: "Item 3"
}();

var ItemConfiguration = function () {

    function ItemConfiguration() {

    }

    ItemConfiguration.prototype = function () {
        getItemConfiguration: function (itemTypes, flag1, flag2, flag3, flag4) {
            switch (itemTypes) {
                case ItemTypes.Item1:
                    if (flag1 && flag2) {
                        return ItemStatus.Status1;
                    } else if (flag3 || flag4) {
                        return ItemStatus.Status2;
                    }
                    break;
                case ItemTypes.Item2:
                    if (flag3 || flag2) {
                        return ItemStatus.Status3;
                    } else if (flag1 || flag2) {
                        return ItemStatus.Status1;
                    }
                    break;
                case ItemTypes.Item3:
                    if (flag3 || flag1 && flag3) {
                        return ItemStatus.Status1;
                    } else if (flag2 && flag4) {
                        return ItemStatus.Status3;
                    }
                    break;
            }
        }
    };
   
    return ItemConfiguration;
} ();

First problem is related to default values. If the flags combination from switch doesn’t return any value, that we should notify one way or another user about this issues. We end up throwing an expectation.
var ItemConfiguration = function () {

    function ItemConfiguration() {

    }

    ItemConfiguration.prototype = function () {
        getItemConfiguration: function (itemType, flag1, flag2, flag3, flag4) {
            switch (itemType) {
                case ItemTypes.Item1:
                    if (flag1 && flag2) {
                        return ItemStatus.Status1;
                    } else if (flag3 || flag4) {
                        return ItemStatus.Status2;
                    }
                    break;
                case ItemTypes.Item2:
                    if (flag3 || flag2) {
                        return ItemStatus.Status3;
                    } else if (flag1 || flag2) {
                        return ItemStatus.Status1;
                    }
                    break;
                case ItemTypes.Item3:
                    if (flag3 || flag1 && flag3) {
                        return ItemStatus.Status1;
                    } else if (flag2 && flag4) {
                        return ItemStatus.Status3;
                    }
                    break;
            }

            throw {
                message: "No flags matching for " + itemType + "with the flags combination"
                + "flag1: " + flag1 + ", "
                + "flag2: " + flag2 + ", "
                + "flag3: " + flag3 + ", "
                + "flag4: " + flag4 + ", "
            };
        }
    };

    return ItemConfiguration;
} ();
Almost okay we think. When we look over the requirements we notify that the user will need the status for all items. Because of this he will need to make 3 different calls. For each call he would need to add all the parameters over and over again. We can have two possible solutions. One is to create an object that has all this flags. The other option is to change our method to return the status for all our item types. I would go with the second approach.
var ItemConfiguration = function () {

    function ItemConfiguration() {

    }

    ItemConfiguration.prototype = function () {
        getItemsConfiguration: function(flag1, flag2, flag3, flag4) {
            var itemsStatus = new Object();
            itemsStatus[ItemTypes.Item1] = _getStatusForItem1(flag1, flag2, flag3, flag4);
            itemsStatus[ItemTypes.Item2] = _getStatusForItem2(flag1, flag2, flag3, flag4);
            itemsStatus[ItemTypes.Item3] = _getStatusForItem3(flag1, flag2, flag3, flag4);

            return itemsStatus;
        },

        _getStatusForItem1:function(flag1, flag2, flag3, flag4) {
            if (flag1 && flag2) {
                return ItemStatus.Status1;
            } else if (flag3 || flag4) {
                return ItemStatus.Status2;
            }

            _noStatusHandler();
        },

        _getStatusForItem2:function(flag1, flag2, flag3, flag4) {
            if (flag3 || flag2) {
                return ItemStatus.Status3;
            } else if (flag1 || flag2) {
                return ItemStatus.Status1;
            }

            _noStatusHandler();
        },

        _getStatusForItem3:function(flag1, flag2, flag3, flag4) {
            if (flag3 || flag1 && flag3) {
                return ItemStatus.Status1;
            } else if (flag2 && flag4) {
                return ItemStatus.Status3;
            }

            _noStatusHandler();
        },

        _noStatusHandler:function() {
            throw {
                message: "No flags matching for " + itemType + "with the flags combination"
                + "flag1: " + flag1 + ", "
                + "flag2: " + flag2 + ", "
                + "flag3: " + flag3 + ", "
                + "flag4: " + flag4 + ", "
            };
        }
    };

    return ItemConfiguration;
} ();
For each item type we extracted a method that calculates the item status. In the case for the input flags we cannot retrieve a status we throw an exception. In our public method, we create an object that contains our item types and status. In this way we removed the switch and the code looks better.
The thing that has a smell is the 4 parameters that are send each time in our private method. We could create an internal object with these 4 parameters and send it as parameter for each private method. Another option is to create 4 private fields and each private method can use them. Because we don’t have any problem with thread concurrency in JavaScript we can go with the second approach without any problem.
var ItemConfiguration = function () {

    var flag1, flag2, flag3, flag4;
   
    function ItemConfiguration() {

    }

    ItemConfiguration.prototype = function () {
        getItemsConfiguration: function(flag1, flag2, flag3, flag4) {
            this.flag1 = flag1;
            this.flag2 = flag2;
            this.flag3 = flag3;
            this.flag4 = flag4;
           
            var itemsStatus = new Object();
            itemsStatus[ItemTypes.Item1] = _getStatusForItem1();
            itemsStatus[ItemTypes.Item2] = _getStatusForItem2();
            itemsStatus[ItemTypes.Item3] = _getStatusForItem3();

            return itemsStatus;
        },

        _getStatusForItem1:function() {
            if (this.flag1 && this.flag2) {
                return ItemStatus.Status1;
            } else if (this.flag3 || this.flag4) {
                return ItemStatus.Status2;
            }

            _noStatusHandler();
        },

        _getStatusForItem2:function() {
            if (this.flag3 || this.flag2) {
                return ItemStatus.Status3;
            } else if (this.flag1 || this.flag2) {
                return ItemStatus.Status1;
            }

            _noStatusHandler();
        },

        _getStatusForItem3:function() {
            if (this.flag3 || this.flag1 && this.flag3) {
                return ItemStatus.Status1;
            } else if (this.flag2 && this.flag4) {
                return ItemStatus.Status3;
            }

            _noStatusHandler();
        },

        _noStatusHandler:function() {
            throw {
                message: "No flags matching for " + itemType + "with the flags combination"
                + "flag1: " + flag1 + ", "
                + "flag2: " + flag2 + ", "
                + "flag3: " + flag3 + ", "
                + "flag4: " + flag4 + ", "
            };
        }
    };

    return ItemConfiguration;
} ();
It seems that the code looks cleaner in this way and is easier to read. For the private method, I would let the user to specify all the parameters because is more clear for him and he don’t need to create a new object to send the parameters and use it only in one place.
One thing that came to my mind is to create an object or a dictionary that contains the private functions for each item type. But it would be to complex and I don’t know if is worth it.
What do you think? Do you see another way to implement it?



Last edit: Another option is to create a mapping based on the flags (for example each combinations of flag has a unique key that point to an object that has our item types configuration –ex: flag1*2^0+flag2*2^1+flag3*2^3 in base 10 or we could use a mapping in base 2). What is my concern for this solution is the complexity of the code increase, even if the numbers of line are less and we don’t have the IF statements anymore.
 

Comments

  1. Hi, Radu!
    Could you explain what does the code below actually do?

    if (this.flag3 || this.flag1 && this.flag3) {
    return ItemStatus.Status1;
    } else if (this.flag2 && this.flag2) {
    return ItemStatus.Status3;
    }

    I guess you carried some typos through-out the article.

    ReplyDelete
    Replies
    1. Based on some Booleans values send by the caller we need to be able to return a list of status for some object. We can imagine that we have a big table with a lot of combinations of flags and based on this combination we can determine the status of some items.

      Delete
    2. flag2 && flag2
      If was a type mistake Thank you. I update the code.

      Delete
    3. The condition in the first If statement is either wrong or contains a typo since it is equivalent to "if(this.flag3)". Proof: http://jsfiddle.net/DenisPostu/2cQe3/3/

      Delete
  2. Some suggestions:
    - I hope that in the real code the parameters have meaningful names, not flag1, flag2, ...

    - without some real context, it's hard to understand if the solution is appropriate: are you sure that there will always be 3 'items' and that they have a fixed number of types?

    - using _ in JS to mark 'private' members is an anti-pattern: there are methods to simulate real private members in JS objects, using closures (http://javascript.crockford.com/private.html)

    ReplyDelete
  3. In the lack of knowing the whole context, it seems to me that you need something like a logic grid (http://www.codeguru.com/cpp/misc/misc/math/article.php/c9629/LogicGrid-An-Elegant-Alternative-to-Your-IfElse-Nightmare.htm), seen very often in digital circuit design. Another way would be having some kind of state machine.

    Regarding the JS part, you should avoid accessing private variables from methods added by prototyping.

    Happy refactoring :)

    ReplyDelete

Post a Comment

Popular posts from this blog

Windows Docker Containers can make WIN32 API calls, use COM and ASP.NET WebForms

After the last post , I received two interesting questions related to Docker and Windows. People were interested if we do Win32 API calls from a Docker container and if there is support for COM. WIN32 Support To test calls to WIN32 API, let’s try to populate SYSTEM_INFO class. [StructLayout(LayoutKind.Sequential)] public struct SYSTEM_INFO { public uint dwOemId; public uint dwPageSize; public uint lpMinimumApplicationAddress; public uint lpMaximumApplicationAddress; public uint dwActiveProcessorMask; public uint dwNumberOfProcessors; public uint dwProcessorType; public uint dwAllocationGranularity; public uint dwProcessorLevel; public uint dwProcessorRevision; } ... [DllImport("kernel32")] static extern void GetSystemInfo(ref SYSTEM_INFO pSI); ... SYSTEM_INFO pSI = new SYSTEM_INFO(...

How to audit an Azure Cosmos DB

In this post, we will talk about how we can audit an Azure Cosmos DB database. Before jumping into the problem let us define the business requirement: As an Administrator I want to be able to audit all changes that were done to specific collection inside my Azure Cosmos DB. The requirement is simple, but can be a little tricky to implement fully. First of all when you are using Azure Cosmos DB or any other storage solution there are 99% odds that you’ll have more than one system that writes data to it. This means that you have or not have control on the systems that are doing any create/update/delete operations. Solution 1: Diagnostic Logs Cosmos DB allows us activate diagnostics logs and stream the output a storage account for achieving to other systems like Event Hub or Log Analytics. This would allow us to have information related to who, when, what, response code and how the access operation to our Cosmos DB was done. Beside this there is a field that specifies what was th...

Cloud Myths: Cloud is Cheaper (Pill 1 of 5 / Cloud Pills)

Cloud Myths: Cloud is Cheaper (Pill 1 of 5 / Cloud Pills) The idea that moving to the cloud reduces the costs is a common misconception. The cloud infrastructure provides flexibility, scalability, and better CAPEX, but it does not guarantee lower costs without proper optimisation and management of the cloud services and infrastructure. Idle and unused resources, overprovisioning, oversize databases, and unnecessary data transfer can increase running costs. The regional pricing mode, multi-cloud complexity, and cost variety add extra complexity to the cost function. Cloud adoption without a cost governance strategy can result in unexpected expenses. Improper usage, combined with a pay-as-you-go model, can result in a nightmare for business stakeholders who cannot track and manage the monthly costs. Cloud-native services such as AI services, managed databases, and analytics platforms are powerful, provide out-of-the-shelve capabilities, and increase business agility and innovation. H...