Skip to main content

AppFabric Cache - more than one writers in the same time

Intr-un post anterior am discutat despre AppFabric Cache, care are la baza mecanismul de DataCache pentru Windows Cache Server. Intr-un mediu in care avem mai multe masini care scriu pe acelasi cache trebuie avuta grija destul de mare la urmatorul caz:
In acelasi timp 2 sau mai multe masini doresc sa scrie acelasi element in cache( aceiasi cheie).
Cuvantul cheie la aceasta problema este "IN ACELASI TIMP". In mod normal am avea urmatoarea implementare pentru a scrie un obiect in cache:
DataCacheFactory cache = new DataCacheFactory();
cache.Put(key,value);
Totul ar functiona fara nici o problema pana cand 2 sau mai multe instante ar incerca sa scrie in acelasi timp un element cu aceiasi key in cache. In acest caz se arunca o exceptie de tip DataCacheException, cu error codul setat DataCacheErrorCode.RetryLater.
Pentru a rezolva aceasta problema avem doua solutii, in functie de cat de probabil e sa apara un astfel de caz putem sa folosim una din solutii, sau o combinatie din cele doua.
Prima solutie ar fi sa me folosim de mecanismul de lock care exista pentru cache.
DataCacheLockHandle lockHandle;
var value = cache.GetAndLock(key, TimeSpan.FromSeconds(1), out lockHandle, true);
cache.PutAndUnlock(key, value, lockHandle);
Avantajul la aceasta solutie este ca inainte sa se faca scrierea se face un lock explicit pe obiectul din cache, dar trebuie avut grija ca fiecare aplicatie care foloseste cache-ul sa foloseasca metode care fac lock - in caz contrat obiectul poate sa fie accesat chiar daca s-a facut lock pe acesta. Un alt dezantaj la aceasta solutie este ca trebuie facute doua requesturi la server. Unul care face GET si altul care face PUT si totodata in cazul in care se intampla ceva intre GET si PUT obiectul din cache poate sa ramana blocat din cauza lock-ului pe care il facem( trebuie sa ne implementam un mecanism de fallback.
Urmatoarea solutie pe care o propun este mult mai primitiva, dar care conserva atat conexiunea la internet cat si durata cat timp obiectul este blocat.
int retrys=5;
while(true)
{
     try
     {
          cache.Put(key,value)
     }
     catch(DataCacheException ex)
     {
          if(ex.ErrorCode == DataCacheErrorCode.Retrylater)
          {
               if(retrys <= 0)
               {
                     throw;
               }
               retrys--;
               continue;
          }
          throw;
     }
}
In cazul in care acest caz nu o sa apara foarte des as alege a doua varianta. Este mult mai simpla si mai sigura. Cand folosim a doua varianta trebuie sa avem grija daca exista si alte aplicatii care acceseaza cache-ul nostru - toti consumatorii trebuie sa foloseasca mecanismul de lock, deoarece altfel nu ar avea nici o valoare modul in care scrim noi in cache.


Comments

Popular posts from this blog

Windows Docker Containers can make WIN32 API calls, use COM and ASP.NET WebForms

After the last post , I received two interesting questions related to Docker and Windows. People were interested if we do Win32 API calls from a Docker container and if there is support for COM. WIN32 Support To test calls to WIN32 API, let’s try to populate SYSTEM_INFO class. [StructLayout(LayoutKind.Sequential)] public struct SYSTEM_INFO { public uint dwOemId; public uint dwPageSize; public uint lpMinimumApplicationAddress; public uint lpMaximumApplicationAddress; public uint dwActiveProcessorMask; public uint dwNumberOfProcessors; public uint dwProcessorType; public uint dwAllocationGranularity; public uint dwProcessorLevel; public uint dwProcessorRevision; } ... [DllImport("kernel32")] static extern void GetSystemInfo(ref SYSTEM_INFO pSI); ... SYSTEM_INFO pSI = new SYSTEM_INFO(...

How to audit an Azure Cosmos DB

In this post, we will talk about how we can audit an Azure Cosmos DB database. Before jumping into the problem let us define the business requirement: As an Administrator I want to be able to audit all changes that were done to specific collection inside my Azure Cosmos DB. The requirement is simple, but can be a little tricky to implement fully. First of all when you are using Azure Cosmos DB or any other storage solution there are 99% odds that you’ll have more than one system that writes data to it. This means that you have or not have control on the systems that are doing any create/update/delete operations. Solution 1: Diagnostic Logs Cosmos DB allows us activate diagnostics logs and stream the output a storage account for achieving to other systems like Event Hub or Log Analytics. This would allow us to have information related to who, when, what, response code and how the access operation to our Cosmos DB was done. Beside this there is a field that specifies what was th...

Cloud Myths: Cloud is Cheaper (Pill 1 of 5 / Cloud Pills)

Cloud Myths: Cloud is Cheaper (Pill 1 of 5 / Cloud Pills) The idea that moving to the cloud reduces the costs is a common misconception. The cloud infrastructure provides flexibility, scalability, and better CAPEX, but it does not guarantee lower costs without proper optimisation and management of the cloud services and infrastructure. Idle and unused resources, overprovisioning, oversize databases, and unnecessary data transfer can increase running costs. The regional pricing mode, multi-cloud complexity, and cost variety add extra complexity to the cost function. Cloud adoption without a cost governance strategy can result in unexpected expenses. Improper usage, combined with a pay-as-you-go model, can result in a nightmare for business stakeholders who cannot track and manage the monthly costs. Cloud-native services such as AI services, managed databases, and analytics platforms are powerful, provide out-of-the-shelve capabilities, and increase business agility and innovation. H...