Skip to main content

Programare paralela in .NET 4.0

Plecam de la premiza ca avem o metoda care executa acelasi cod pentru fiecare element dintr-o colectie:
public bool CheckItem(Item item)
{
...
}
In mod natural am scrie:
foreach (Item item in items)
{
item.IsValid = CheckItem(item);
}

sau
items.ForEach(item=>CheckItem(item));
Am putea sa rulam paralel acest cod foarte usor, daca ne folosim de clasa ajutatoare Parallel:
Parallel.ForEach(items,new Action(item=>CheckItem(item)));
O varianta mai simpla in acest caz este sa scriem direct:
Parallel.ForEach(items,CheckItem);
Daca vrem sa parcurgem doar o parte din colectie putem sa scriem in felul urmator:
Parallel.For(0, 3, new Action(index => CheckItem(items[index])));
Atentie, daca lucrati cu stream-uri sau baze de date trebuie avut grija la close si dispose.
Problema este ceea ce se petrece in spate. N threaduri sunt folosite pentru linia de cod scrisa mai sus. Daca suntem pe client side, acest lucru nu este atat de important, dar daca suntem pe partea de server, putem avea mari probleme. De exemplu putem sa ajunge sa avem toate threadurile din pool folosite. Aceasta problema apare din cauza ca pentru fiecare request care vine prin WCF sau HTTP poate sa porneasca N threaduri. Din punct de vedere a scalabilității aici pot sa apara mari problem( vezi P.S. de la sfîrșitul postului).
public async Task CheckItem(ITempDataProvider item)
{
...
}
Task.Factory.ContinueWhenAll(
from item in items select CheckItem(item),
endTask => NotifyWaiter());
Pentru a putea face acest lucru aveti nevoie de Async CTP instalat. Acesta in spate apeleaza asyncron pentru fiecare item in parte metoda CheckItem. Keywordul async ii spune compilatorului ca acesta metoda o sa fie apelata asyncron. Iar ContinueWhenAll creaza un task care o sa fie rulat la sfarsitul executiei listei de taskuri specificate.
Async CTP
O alta varianta este sa folosim
WithDegreeOfParallelism. Aceasta ne permite sa specificam numarul de threaduri care pot sa ruleze paralel prin intermediul limbajului PLINQ
P.S.: Am ajuns sa scriu acest post in momentul in care am scris un cod server side care folosea Parallel.ForEach pentru a prelucra un request de la client si am ajuns doar prin cateva requesturi sa ocup peste 200MB din memorie.

Comments

Popular posts from this blog

Windows Docker Containers can make WIN32 API calls, use COM and ASP.NET WebForms

After the last post , I received two interesting questions related to Docker and Windows. People were interested if we do Win32 API calls from a Docker container and if there is support for COM. WIN32 Support To test calls to WIN32 API, let’s try to populate SYSTEM_INFO class. [StructLayout(LayoutKind.Sequential)] public struct SYSTEM_INFO { public uint dwOemId; public uint dwPageSize; public uint lpMinimumApplicationAddress; public uint lpMaximumApplicationAddress; public uint dwActiveProcessorMask; public uint dwNumberOfProcessors; public uint dwProcessorType; public uint dwAllocationGranularity; public uint dwProcessorLevel; public uint dwProcessorRevision; } ... [DllImport("kernel32")] static extern void GetSystemInfo(ref SYSTEM_INFO pSI); ... SYSTEM_INFO pSI = new SYSTEM_INFO(...

How to audit an Azure Cosmos DB

In this post, we will talk about how we can audit an Azure Cosmos DB database. Before jumping into the problem let us define the business requirement: As an Administrator I want to be able to audit all changes that were done to specific collection inside my Azure Cosmos DB. The requirement is simple, but can be a little tricky to implement fully. First of all when you are using Azure Cosmos DB or any other storage solution there are 99% odds that you’ll have more than one system that writes data to it. This means that you have or not have control on the systems that are doing any create/update/delete operations. Solution 1: Diagnostic Logs Cosmos DB allows us activate diagnostics logs and stream the output a storage account for achieving to other systems like Event Hub or Log Analytics. This would allow us to have information related to who, when, what, response code and how the access operation to our Cosmos DB was done. Beside this there is a field that specifies what was th...

Cloud Myths: Cloud is Cheaper (Pill 1 of 5 / Cloud Pills)

Cloud Myths: Cloud is Cheaper (Pill 1 of 5 / Cloud Pills) The idea that moving to the cloud reduces the costs is a common misconception. The cloud infrastructure provides flexibility, scalability, and better CAPEX, but it does not guarantee lower costs without proper optimisation and management of the cloud services and infrastructure. Idle and unused resources, overprovisioning, oversize databases, and unnecessary data transfer can increase running costs. The regional pricing mode, multi-cloud complexity, and cost variety add extra complexity to the cost function. Cloud adoption without a cost governance strategy can result in unexpected expenses. Improper usage, combined with a pay-as-you-go model, can result in a nightmare for business stakeholders who cannot track and manage the monthly costs. Cloud-native services such as AI services, managed databases, and analytics platforms are powerful, provide out-of-the-shelve capabilities, and increase business agility and innovation. H...