Skip to main content

(Part 1) Testing the limits of Windows Azure Service Bus


At the end of the last year I had the opportunity to write an application that had to handle millions of messages every day. To distribute the messages between different components of the application we used Windows Azure Service Bus Service.
In the past I talked a lot about this distribution messaging system. In this post we will see what are the magic numbers of a Topic from Windows Azure Service Bus Service.
Scope:
To see how many messages can be process in as short period of time. What is the maximum number of messages that can be processed using Service Bus using only one Topic. What is the optimal number of consumers for a subscriber or topic.
Environment:
Each message that was added to Service Bus was pretty small. We had around 100 characters in UTF7 and 3 properties added to each BrokeredMessage.
We run the tests with one; two and three subscribers with different filter rules and the result were similar.
Action:
We created 5 to 10 worker roles that started to send hundreds of messages to our Service Bus Topic.  In a very short period of time we could send millions of messages.
Results:
We tried pushing on the topic around 5 million messages. We observe that after a part of the messages are send to the Topic, the server starts to be slower. By slower I mean that the response latency increased drastically. Not only on the send operation, but also on the subscribers – the messages started to be received by consumer slower and slower.
One interesting part was on the portal. Even if the Topic was almost full, the number of messages that were reported on the Topic was only around 200.000-300.000.
After different experiment, we observe that with the current version of Service Bus and with the current configuration, a Topic can handle around 1.000.000 messages every 30 minutes.
Note: This value was obtain based on our experiment with our topic and messages configuration. This value is not a generic value, for any kind of project and configuration.
Cost:
From the cost perspective, we end up with a cost around 1$ per day if we use Windows Azure Service Bus for processing 1.000.000 messages. The size of each message was calculated by us around 24kB. This means that for processing 10.000.000 messages every day for a month would cost us around 300$. Before thinking that this are a lot of money, you should take into account that Service Bus will not lose any messages and in the end we process 300.000.000 (300M) messages per month.

I would conclude that the obtained value is pretty good. It is more that we expect to process a 30 minutes job, using one topic.
In the next post I will present the number of consumers that we used to process the messages in the best way possible.

Comments

Popular posts from this blog

Windows Docker Containers can make WIN32 API calls, use COM and ASP.NET WebForms

After the last post , I received two interesting questions related to Docker and Windows. People were interested if we do Win32 API calls from a Docker container and if there is support for COM. WIN32 Support To test calls to WIN32 API, let’s try to populate SYSTEM_INFO class. [StructLayout(LayoutKind.Sequential)] public struct SYSTEM_INFO { public uint dwOemId; public uint dwPageSize; public uint lpMinimumApplicationAddress; public uint lpMaximumApplicationAddress; public uint dwActiveProcessorMask; public uint dwNumberOfProcessors; public uint dwProcessorType; public uint dwAllocationGranularity; public uint dwProcessorLevel; public uint dwProcessorRevision; } ... [DllImport("kernel32")] static extern void GetSystemInfo(ref SYSTEM_INFO pSI); ... SYSTEM_INFO pSI = new SYSTEM_INFO(

Azure AD and AWS Cognito side-by-side

In the last few weeks, I was involved in multiple opportunities on Microsoft Azure and Amazon, where we had to analyse AWS Cognito, Azure AD and other solutions that are available on the market. I decided to consolidate in one post all features and differences that I identified for both of them that we should need to take into account. Take into account that Azure AD is an identity and access management services well integrated with Microsoft stack. In comparison, AWS Cognito is just a user sign-up, sign-in and access control and nothing more. The focus is not on the main features, is more on small things that can make a difference when you want to decide where we want to store and manage our users.  This information might be useful in the future when we need to decide where we want to keep and manage our users.  Feature Azure AD (B2C, B2C) AWS Cognito Access token lifetime Default 1h – the value is configurable 1h – cannot be modified

What to do when you hit the throughput limits of Azure Storage (Blobs)

In this post we will talk about how we can detect when we hit a throughput limit of Azure Storage and what we can do in that moment. Context If we take a look on Scalability Targets of Azure Storage ( https://azure.microsoft.com/en-us/documentation/articles/storage-scalability-targets/ ) we will observe that the limits are prety high. But, based on our business logic we can end up at this limits. If you create a system that is hitted by a high number of device, you can hit easily the total number of requests rate that can be done on a Storage Account. This limits on Azure is 20.000 IOPS (entities or messages per second) where (and this is very important) the size of the request is 1KB. Normally, if you make a load tests where 20.000 clients will hit different blobs storages from the same Azure Storage Account, this limits can be reached. How we can detect this problem? From client, we can detect that this limits was reached based on the HTTP error code that is returned by HTTP