Skip to main content

Digging through SignalR - Commands

Looking over source code of SignalR. I found some interesting class and ways to implement different behaviors. In the next series of post I will share with you what I found interesting.
Before starting, you should know that SignalR is an open source project that can be accessed using GitHub.
In today post we will talk about command pattern. This patterns over the ability to define a “macro”/command that can be executed without knowing the caller. Commands can be handle in different ways, from create a queue of them to combining or offering support for redo/undo.
In SignalR library I found an implementation of command pattern that caught my attention.
internal interface ICommand
{
    string DisplayName { get; }
    string Help { get; }
    string[] Names { get; }
    void Execute(string[] args);
}
internal abstract class Command : ICommand
{
    public Command(Action<string> info, Action<string> success, Action<string> warning, Action<string> error)
    {
        Info = info;
        Success = success;
        Warning = warning;
        Error = error;
    }

    public abstract string DisplayName { get; }

    public abstract string Help { get; }

    public abstract string[] Names { get; }

    public abstract void Execute(string[] args);

    protected Action<string> Info { get; private set; }

    protected Action<string> Success { get; private set; }

    protected Action<string> Warning { get; private set; }

    [System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Performance", "CA1811:AvoidUncalledPrivateCode", Justification = "May be used in future derivations.")]
    protected Action<string> Error { get; private set; }
}
Why? The way how the handlers for actions like success, warning, info and error are transmitted. When creating the command, you need to specify them through the construct. In this way the developer will be forced to specify them. I think that this a great and simple way to specify them. If a developer don’t want to handle this actions, that he can transmit a null value for them. This solution is better than having one or more events.
Maybe it would be pretty interesting to wrap this 4 parameters in a simple class. In this way you could have all the similar actions under the same object. Beside this we would reduce the numbers of parameters of the Command class with 3.
internal class CommandCallbackActions
{
    public CommandCallbackActions(Action<string> info, Action<string> success, Action<string> warning, Action<string> error)
    {
        Info = info;
        Success = success;
        Warning = warning;
        Error = error;
    }
    
    protected Action<string> Info { get; private set; }

    protected Action<string> Success { get; private set; }

    protected Action<string> Warning { get; private set; }

    [System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Performance", "CA1811:AvoidUncalledPrivateCode", Justification = "May be used in future derivations.")]
    protected Action<string> Error { get; private set; }
}

internal abstract class Command : ICommand
{   
    public Command(CommandCallbackActions callbackActions)
    {
        CallbackActions = callbackActions;
    }

    public abstract string DisplayName { get; }

    public abstract string Help { get; }

    public abstract string[] Names { get; }

    public abstract void Execute(string[] args);

    public CommandCallbackActions CallbackActions { get; set; }
}
Another method that drew my attention was the “Execute” command. The command arguments are send through an array of string. This is a very and simple and robust way to send parameters. If this is enough for your application, than you should not change this to something more complicated. Otherwise you can replace the array of arguments with an interface (“ICommandArgs”). Each custom command can have his implementation of this interface. You should use this only if you really need, otherwise you will only make the project more complicated.

Comments

Popular posts from this blog

Windows Docker Containers can make WIN32 API calls, use COM and ASP.NET WebForms

After the last post , I received two interesting questions related to Docker and Windows. People were interested if we do Win32 API calls from a Docker container and if there is support for COM. WIN32 Support To test calls to WIN32 API, let’s try to populate SYSTEM_INFO class. [StructLayout(LayoutKind.Sequential)] public struct SYSTEM_INFO { public uint dwOemId; public uint dwPageSize; public uint lpMinimumApplicationAddress; public uint lpMaximumApplicationAddress; public uint dwActiveProcessorMask; public uint dwNumberOfProcessors; public uint dwProcessorType; public uint dwAllocationGranularity; public uint dwProcessorLevel; public uint dwProcessorRevision; } ... [DllImport("kernel32")] static extern void GetSystemInfo(ref SYSTEM_INFO pSI); ... SYSTEM_INFO pSI = new SYSTEM_INFO(...

How to audit an Azure Cosmos DB

In this post, we will talk about how we can audit an Azure Cosmos DB database. Before jumping into the problem let us define the business requirement: As an Administrator I want to be able to audit all changes that were done to specific collection inside my Azure Cosmos DB. The requirement is simple, but can be a little tricky to implement fully. First of all when you are using Azure Cosmos DB or any other storage solution there are 99% odds that you’ll have more than one system that writes data to it. This means that you have or not have control on the systems that are doing any create/update/delete operations. Solution 1: Diagnostic Logs Cosmos DB allows us activate diagnostics logs and stream the output a storage account for achieving to other systems like Event Hub or Log Analytics. This would allow us to have information related to who, when, what, response code and how the access operation to our Cosmos DB was done. Beside this there is a field that specifies what was th...

Cloud Myths: Cloud is Cheaper (Pill 1 of 5 / Cloud Pills)

Cloud Myths: Cloud is Cheaper (Pill 1 of 5 / Cloud Pills) The idea that moving to the cloud reduces the costs is a common misconception. The cloud infrastructure provides flexibility, scalability, and better CAPEX, but it does not guarantee lower costs without proper optimisation and management of the cloud services and infrastructure. Idle and unused resources, overprovisioning, oversize databases, and unnecessary data transfer can increase running costs. The regional pricing mode, multi-cloud complexity, and cost variety add extra complexity to the cost function. Cloud adoption without a cost governance strategy can result in unexpected expenses. Improper usage, combined with a pay-as-you-go model, can result in a nightmare for business stakeholders who cannot track and manage the monthly costs. Cloud-native services such as AI services, managed databases, and analytics platforms are powerful, provide out-of-the-shelve capabilities, and increase business agility and innovation. H...