Skip to main content

Automation Rules inside Azure Sentinel

 Nowadays, automation is part of our day-to-day life. To be able to react to security incidents, it is not enough to detect them. We need a mechanism that can trigger an action when an incident is detected. 

Azure Sentinel is a cloud-native SIEM (security information and event manager) that analyze what is happening inside your organization and can detect a possible security breach. Azure Sentinel can automatically raise an alert when an incident occurs.

This is not enough, and to increase the SOC efficiency, reduce the response time and the no. of resources that you have available, you need to be able to implement SOAR (Security Orchestration, Automation and Response) on top of it. 

Automation is the keyword here; we can now do it inside Azure Sentinel using Automation Rules. 

Except for an alert and running a playbook the automation rules allow us to react to multiple analytics rules at once and automatically assign or close incidents. It is a mechanism that enables us to do the orchestration, incident orchestration, on top of Azure Sentinel. Complex workflows for different types of incidents can now be defined and part of Azure Sentinel directly. 

The running and trigger SLAs for automation rules that we define and the playbooks trigger are under a few seconds and take into account how you define the rule and how long each playbook takes. 

As we expected when we define automation rules there are the following components:

  • Trigger
  • Conditions
  • Actions
  • Order
  • Expiration date
The expiration date is a nice feature that makes our life much easier especially when we run a security test (e.g. penetration testing) or we have a time window for specific activities. For example, during a penetration test, we might want to define automation that changes the severity to low and automatically close the incident. This can be achieved easily using the expiration date and the order component. Without automation rules, incident suppression is not easily achieved during penetration testing, especially in the production environment. 

With automation rules, we have the ability to reuse the playbooks. For example, we could have a playbook that automatically generates a ticket inside ServiceNow and do automatically assignment of incidents taking into account the SOC specialization and who is on-call at that moment in time. 

The last thing that I want to mention is the tagging capability. It enables us to add tags to each incident. Useful for larger organizations, where you want to filter the incidents on your own custom tags and rules. 

Don't forget that at this moment in time (Oct 2021), automation rules are still in public preview. Play with them in non-production env. and be ready to push them to PROD once they are GA (General Availability)

Comments

Popular posts from this blog

Windows Docker Containers can make WIN32 API calls, use COM and ASP.NET WebForms

After the last post , I received two interesting questions related to Docker and Windows. People were interested if we do Win32 API calls from a Docker container and if there is support for COM. WIN32 Support To test calls to WIN32 API, let’s try to populate SYSTEM_INFO class. [StructLayout(LayoutKind.Sequential)] public struct SYSTEM_INFO { public uint dwOemId; public uint dwPageSize; public uint lpMinimumApplicationAddress; public uint lpMaximumApplicationAddress; public uint dwActiveProcessorMask; public uint dwNumberOfProcessors; public uint dwProcessorType; public uint dwAllocationGranularity; public uint dwProcessorLevel; public uint dwProcessorRevision; } ... [DllImport("kernel32")] static extern void GetSystemInfo(ref SYSTEM_INFO pSI); ... SYSTEM_INFO pSI = new SYSTEM_INFO(...

How to audit an Azure Cosmos DB

In this post, we will talk about how we can audit an Azure Cosmos DB database. Before jumping into the problem let us define the business requirement: As an Administrator I want to be able to audit all changes that were done to specific collection inside my Azure Cosmos DB. The requirement is simple, but can be a little tricky to implement fully. First of all when you are using Azure Cosmos DB or any other storage solution there are 99% odds that you’ll have more than one system that writes data to it. This means that you have or not have control on the systems that are doing any create/update/delete operations. Solution 1: Diagnostic Logs Cosmos DB allows us activate diagnostics logs and stream the output a storage account for achieving to other systems like Event Hub or Log Analytics. This would allow us to have information related to who, when, what, response code and how the access operation to our Cosmos DB was done. Beside this there is a field that specifies what was th...

Cloud Myths: Cloud is Cheaper (Pill 1 of 5 / Cloud Pills)

Cloud Myths: Cloud is Cheaper (Pill 1 of 5 / Cloud Pills) The idea that moving to the cloud reduces the costs is a common misconception. The cloud infrastructure provides flexibility, scalability, and better CAPEX, but it does not guarantee lower costs without proper optimisation and management of the cloud services and infrastructure. Idle and unused resources, overprovisioning, oversize databases, and unnecessary data transfer can increase running costs. The regional pricing mode, multi-cloud complexity, and cost variety add extra complexity to the cost function. Cloud adoption without a cost governance strategy can result in unexpected expenses. Improper usage, combined with a pay-as-you-go model, can result in a nightmare for business stakeholders who cannot track and manage the monthly costs. Cloud-native services such as AI services, managed databases, and analytics platforms are powerful, provide out-of-the-shelve capabilities, and increase business agility and innovation. H...