Skip to main content

Why not to use StopWatch when you need to measure the duration of an HTTP request in WebAPI

In this post we will talk about how we can measure how long it takes for a HTTP request to be executed on an ASP.NET MVC application.
All the tests are done using a web site hosted on Microsoft Azure. The instance used for this purpose is Shared - F1.

Let's assume that we have the following requirement:
At the end of each HTTP request you need to add to the logs information related to request duration.
The first solution that could come into our mind is to use "HttpContext.Current.Timestamp" to calculate the duration of a request. In theory we could calculate the difference between "DateTime.Now" and timestamp from "HttpContext".

protected void Application_EndRequest()
    Trace.WriteLine(string.Format("Request duration: {0}",
         (DateTime.Now - HttpContext.Current.Timestamp).TotalMilliseconds));

As we can see in the above example, we added this logic in the "Global.asax" file, in the "Application_EndRequest" method. Don't forget that the time format of HttpContext is local time not UTC time.

Out of topic: The code can be added in different locations, from "ActionFilter" to a HTTP Module. The location it is not important for now.

This solution is simple and nice, but the accurate of the duration is not the best one, but it is enough for most cases.
Remarks: Don't forget that "DateTime.Now" has a resolution accuracy of ~10ms.
But, the results are very good.
  • min, avg and max is in ms
  • first table describes the status code of the http request
  • second table group all results based on request duration (first columns is request duration, second column contains the number of requests) 
For this, you could try to use Stopwatch and come with the following solution:
private static readonly ConcurrentDictionary<HttpRequest, Stopwatch> timeDictionary = 
     new ConcurrentDictionary<HttpRequest, Stopwatch>();

protected void Application_BeginRequest(object sender, EventArgs e)

protected void Application_EndRequest(object sender, EventArgs e)
    Stopwatch sw = null;
    if (timeDictionary.TryGetValue(Request, out sw))
            "Request duration: {0}",

The above solution is using a Stopwatch to calculate the duration of each request. It will work great until ... you will hit 100 or 1.000 request per second. In that moment, if you have for example a Web API with a simple GET, like in the below example you will have 25s latency and a lot of timeouts.

public async Task<IHttpActionResult> GetFooAsync(string id)
    return Ok();

Results for 1.000 requests simultaneous:

You are wondering what are the results when you remove the logic from Begin and End requests. Let's take a look.
As we can see, without stopwatch we are pretty okay.
In comparison with the first test, that used "HttpContext.Current.Timestamp" the results are similar - +/- 1s is acceptable because the client was on my machine and the quality of internet connection can vary.

Le'ts try to not store the Stopwatch in a collection. We could add Stopwatch directly to the HttpRequest.

protected void Application_BeginRequest(object sender, EventArgs e)
    HttpApplication httpApp = (HttpApplication)sender;
    httpApp.Context.Items["Timer"] = Stopwatch.StartNew();

protected void Application_EndRequest(object sender, EventArgs e)
    var httpApp = (HttpApplication)sender;
    var sw = (Stopwatch)httpApp.Context.Items["Timer"];

The results are very similar with the one that we obtained using a collection of Stopwatch's.

  • min: 107ms     
  • avg: 25098.356ms     
  • max: 50489
The best solution
Of course the best solution is to use Performance Counters or a profiling tool like Glimse or similar tools. 

In conclusion we can say that using Stopwatch is a big mistake when we need to measure how long it takes for different block of code to execute when the load on the system is very high, especially on web application where we can use HttpContext.


Popular posts from this blog

ADO.NET provider with invariant name 'System.Data.SqlClient' could not be loaded

Today blog post will be started with the following error when running DB tests on the CI machine:
threw exception: System.InvalidOperationException: The Entity Framework provider type 'System.Data.Entity.SqlServer.SqlProviderServices, EntityFramework.SqlServer' registered in the application config file for the ADO.NET provider with invariant name 'System.Data.SqlClient' could not be loaded. Make sure that the assembly-qualified name is used and that the assembly is available to the running application. See for more information. at System.Data.Entity.Infrastructure.DependencyResolution.ProviderServicesFactory.GetInstance(String providerTypeName, String providerInvariantName) This error happened only on the Continuous Integration machine. On the devs machines, everything has fine. The classic problem – on my machine it’s working. The CI has the following configuration:

TeamCity.NET 4.51EF 6.0.2VS2013
It seems that there …

Entity Framework (EF) TransactionScope vs Database.BeginTransaction

In today blog post we will talk a little about a new feature that is available on EF6+ related to Transactions.
Until now, when we had to use transaction we used ‘TransactionScope’. It works great and I would say that is something that is now in our blood.
using (var scope = new TransactionScope(TransactionScopeOption.Required)) { using (SqlConnection conn = new SqlConnection("...")) { conn.Open(); SqlCommand sqlCommand = new SqlCommand(); sqlCommand.Connection = conn; sqlCommand.CommandText = ... sqlCommand.ExecuteNonQuery(); ... } scope.Complete(); } Starting with EF6.0 we have a new way to work with transactions. The new approach is based on Database.BeginTransaction(), Database.Rollback(), Database.Commit(). Yes, no more TransactionScope.
In the followi…

GET call of REST API that contains '/'-slash character in the value of a parameter

Let’s assume that we have the following scenario: I have a public HTTP endpoint and I need to post some content using GET command. One of the parameters contains special characters like “\” and “/”. If the endpoint is an ApiController than you may have problems if you encode the parameter using the http encoder.
using (var httpClient = new HttpClient()) { httpClient.BaseAddress = baseUrl; Task<HttpResponseMessage> response = httpClient.GetAsync(string.Format("api/foo/{0}", "qwert/qwerqwer"))); response.Wait(); response.Result.EnsureSuccessStatusCode(); } One possible solution would be to encode the query parameter using UrlTokenEncode method of HttpServerUtility class and GetBytes method ofUTF8. In this way you would get the array of bytes of the parameter and encode them as a url token.
The following code show to you how you could write the encode and decode methods.