Skip to main content

Patterns in Windows Azure Service Bus - Content-Based Router Pattern

In one of my latest post I talked about Resequencer Pattern, which can be used with success using Windows Azure Service Bus.  We saw how we can retrieve messages in the same order as they were sending to the Service Bus.
But what about Content-Based Router Pattern? The main scope of this pattern is the ability to route each message to different clients based on the data of each message. The system the process each message has to be able to redirect a message to a different consumer (client) based on the data that message contains.
One of the key features of this pattern is ability to change and maintained the rules that are used to redirect each message based on the content.
Windows Azure gives us the possibility to implement this pattern using Service Bus Topic. Each channel, where messages are redirected can be represented by a subscriber. As you already know each subscriber can have attached a filter that can filter messages based on the content. For this purpose we can use SqlFilter. Using SqlFilter we can look over the properties of a message and route them based on this purpose.
To be able to route messages based on the properties, we need to add the properties to our message. This step needs to be done on the producer side, on the system that produces messages, before adding them to the Service Bus Topic.
In the following example we will see how we can add these properties to our messages and how we can define these rules on the subscription side.
First step is to create the topic:
NamespaceManager namespaceManager = NamespaceManager.CreateFromConnectionString(
     CloudConfigurationManager.GetSetting(“ServiceBusConnectionString”));

if (!namespaceManager.TopicExists("myFooTopic"))
{
    namespaceManager.CreateTopic("myFooTopic");
}
After that, from the client side, we can create a message and send it to the topic. In our case we add a custom property named “property1”.
TopicClient topicClient = TopicClient.CreateFromConnectionString(
    CloudConfigurationManager.GetSetting("ServiceBusConnectionString"),
    "myFooTopic");

BrokeredMessage message = new BrokeredMessage();
message.Properties["property1"] = 10;
topicClient.Send(message);
>Next, we need to create the subscription that accepts only messages that have property equal to 10.
topicClient.AddSubscription("Property1Equal10", new SqlFilter( "property1 == 10") );
The last step is on the consumer side. We will consume message that are sent our subscription.
SubscriptionClient subscriptionClient = SubscriptionClient.CreateFromConnectionString(
    CloudConfigurationManager.GetSetting("ServiceBusConnectionString"),
    "myFooTopic",
    "Property1Equal10");

while(true)
{
   BrokeredMessage brokeredMessage = subscriptionClient.Receive();

   if (message != null)
   {
       try
       {
           ...
           message.Complete();
       }
       catch (Exception)
       {
           message.Abandon();
       }
      }
   }
}
There are a lot of cases when we can use this pattern. We can imagine a system that need to route messages based on the information contained in the message. For example we can have a system that process newsletters. Based on the content of the newsletters we want to redirect messages to the specific group of email. This can be very easily done using this pattern.
Last edit: A list of all patterns that can be used with Windows Azure Service Bus, that were described by me LINK.  

Comments

Popular posts from this blog

Windows Docker Containers can make WIN32 API calls, use COM and ASP.NET WebForms

After the last post , I received two interesting questions related to Docker and Windows. People were interested if we do Win32 API calls from a Docker container and if there is support for COM. WIN32 Support To test calls to WIN32 API, let’s try to populate SYSTEM_INFO class. [StructLayout(LayoutKind.Sequential)] public struct SYSTEM_INFO { public uint dwOemId; public uint dwPageSize; public uint lpMinimumApplicationAddress; public uint lpMaximumApplicationAddress; public uint dwActiveProcessorMask; public uint dwNumberOfProcessors; public uint dwProcessorType; public uint dwAllocationGranularity; public uint dwProcessorLevel; public uint dwProcessorRevision; } ... [DllImport("kernel32")] static extern void GetSystemInfo(ref SYSTEM_INFO pSI); ... SYSTEM_INFO pSI = new SYSTEM_INFO(...

How to audit an Azure Cosmos DB

In this post, we will talk about how we can audit an Azure Cosmos DB database. Before jumping into the problem let us define the business requirement: As an Administrator I want to be able to audit all changes that were done to specific collection inside my Azure Cosmos DB. The requirement is simple, but can be a little tricky to implement fully. First of all when you are using Azure Cosmos DB or any other storage solution there are 99% odds that you’ll have more than one system that writes data to it. This means that you have or not have control on the systems that are doing any create/update/delete operations. Solution 1: Diagnostic Logs Cosmos DB allows us activate diagnostics logs and stream the output a storage account for achieving to other systems like Event Hub or Log Analytics. This would allow us to have information related to who, when, what, response code and how the access operation to our Cosmos DB was done. Beside this there is a field that specifies what was th...

Cloud Myths: Cloud is Cheaper (Pill 1 of 5 / Cloud Pills)

Cloud Myths: Cloud is Cheaper (Pill 1 of 5 / Cloud Pills) The idea that moving to the cloud reduces the costs is a common misconception. The cloud infrastructure provides flexibility, scalability, and better CAPEX, but it does not guarantee lower costs without proper optimisation and management of the cloud services and infrastructure. Idle and unused resources, overprovisioning, oversize databases, and unnecessary data transfer can increase running costs. The regional pricing mode, multi-cloud complexity, and cost variety add extra complexity to the cost function. Cloud adoption without a cost governance strategy can result in unexpected expenses. Improper usage, combined with a pay-as-you-go model, can result in a nightmare for business stakeholders who cannot track and manage the monthly costs. Cloud-native services such as AI services, managed databases, and analytics platforms are powerful, provide out-of-the-shelve capabilities, and increase business agility and innovation. H...