Skip to main content

AppFabric Cache - more than one writers in the same time

Intr-un post anterior am discutat despre AppFabric Cache, care are la baza mecanismul de DataCache pentru Windows Cache Server. Intr-un mediu in care avem mai multe masini care scriu pe acelasi cache trebuie avuta grija destul de mare la urmatorul caz:
In acelasi timp 2 sau mai multe masini doresc sa scrie acelasi element in cache( aceiasi cheie).
Cuvantul cheie la aceasta problema este "IN ACELASI TIMP". In mod normal am avea urmatoarea implementare pentru a scrie un obiect in cache:
DataCacheFactory cache = new DataCacheFactory();
cache.Put(key,value);
Totul ar functiona fara nici o problema pana cand 2 sau mai multe instante ar incerca sa scrie in acelasi timp un element cu aceiasi key in cache. In acest caz se arunca o exceptie de tip DataCacheException, cu error codul setat DataCacheErrorCode.RetryLater.
Pentru a rezolva aceasta problema avem doua solutii, in functie de cat de probabil e sa apara un astfel de caz putem sa folosim una din solutii, sau o combinatie din cele doua.
Prima solutie ar fi sa me folosim de mecanismul de lock care exista pentru cache.
DataCacheLockHandle lockHandle;
var value = cache.GetAndLock(key, TimeSpan.FromSeconds(1), out lockHandle, true);
cache.PutAndUnlock(key, value, lockHandle);
Avantajul la aceasta solutie este ca inainte sa se faca scrierea se face un lock explicit pe obiectul din cache, dar trebuie avut grija ca fiecare aplicatie care foloseste cache-ul sa foloseasca metode care fac lock - in caz contrat obiectul poate sa fie accesat chiar daca s-a facut lock pe acesta. Un alt dezantaj la aceasta solutie este ca trebuie facute doua requesturi la server. Unul care face GET si altul care face PUT si totodata in cazul in care se intampla ceva intre GET si PUT obiectul din cache poate sa ramana blocat din cauza lock-ului pe care il facem( trebuie sa ne implementam un mecanism de fallback.
Urmatoarea solutie pe care o propun este mult mai primitiva, dar care conserva atat conexiunea la internet cat si durata cat timp obiectul este blocat.
int retrys=5;
while(true)
{
     try
     {
          cache.Put(key,value)
     }
     catch(DataCacheException ex)
     {
          if(ex.ErrorCode == DataCacheErrorCode.Retrylater)
          {
               if(retrys <= 0)
               {
                     throw;
               }
               retrys--;
               continue;
          }
          throw;
     }
}
In cazul in care acest caz nu o sa apara foarte des as alege a doua varianta. Este mult mai simpla si mai sigura. Cand folosim a doua varianta trebuie sa avem grija daca exista si alte aplicatii care acceseaza cache-ul nostru - toti consumatorii trebuie sa foloseasca mecanismul de lock, deoarece altfel nu ar avea nici o valoare modul in care scrim noi in cache.


Comments

Popular posts from this blog

Why Database Modernization Matters for AI

  When companies transition to the cloud, they typically begin with applications and virtual machines, which is often the easier part of the process. The actual complexity arises later when databases are moved. To save time and effort, cloud adoption is more of a cloud migration in an IaaS manner, fulfilling current, but not future needs. Even organisations that are already in the cloud find that their databases, although “migrated,” are not genuinely modernised. This disparity becomes particularly evident when they begin to explore AI technologies. Understanding Modernisation Beyond Migration Database modernisation is distinct from merely relocating an outdated database to Azure. It's about making your data layer ready for future needs, like automation, real-time analytics, and AI capabilities. AI needs high throughput, which can be achieved using native DB cloud capabilities. When your database runs in a traditional setup (even hosted in the cloud), in that case, you will enc...

How to audit an Azure Cosmos DB

In this post, we will talk about how we can audit an Azure Cosmos DB database. Before jumping into the problem let us define the business requirement: As an Administrator I want to be able to audit all changes that were done to specific collection inside my Azure Cosmos DB. The requirement is simple, but can be a little tricky to implement fully. First of all when you are using Azure Cosmos DB or any other storage solution there are 99% odds that you’ll have more than one system that writes data to it. This means that you have or not have control on the systems that are doing any create/update/delete operations. Solution 1: Diagnostic Logs Cosmos DB allows us activate diagnostics logs and stream the output a storage account for achieving to other systems like Event Hub or Log Analytics. This would allow us to have information related to who, when, what, response code and how the access operation to our Cosmos DB was done. Beside this there is a field that specifies what was th...

[Post Event] Azure AI Connect, March 2025

On March 13th, I had the opportunity to speak at Azure AI Connect about modern AI architectures.  My session focused on the importance of modernizing cloud systems to efficiently handle the increasing payload generated by AI.