Skip to main content

Cand sa folosim System.Thread.Timer

In .NET putem sa alegem din 3 tipuri de timer:
System.Windows.Forms.Timer se foloseste in general pe UI, cand trebuie sa facem update. System.Timer o sa il folosim de obicei de obicei pe partea de server cand vrem mai multe flexibilitate si mai mult optiuni. Din cele trei timer-uri, acesta are cele mai multe optiuni.
System.Thread.Timer, care rulează un nou thread pentru operațiile sale. Acesta este folositor când vrem sa facem operații asyncron.
System.Threading.Timer timer = new System.Threading.Timer(new TimerCallback(ExecutaCeva), null, 0, 2000);
...
private void ExecutaCeva(object obj)
{
....
}
Pentru a face disable/enable putem sa folosim:
timer.Change(Timeout.Infinite, Timeout.Infinite); //Disable.
timer.Change(0, 2000); //Enable.
Cea ce mi s-a parut foarte folositor la acest imer sunt parametrii lui Change si ultimii doi parametrii a contructorului. Prin intermediul lor putem sa specificam dupa ce perioada sa se apeleze metoda ExecutaCeva, iar apoi la ce interval de timp aceasta sa fie executa.
Sunt cazuri cand vrem ca primul apel ExecutaCeva sa fie facut dupa 1 secunda, iar apoi timer-ul sa apeleze aceasta metoda la 10 secunte. Pentru acest lucru daac am folostii System.Timer ar fi nevoie sa oprim timer-ul dupa prima executie, sa setam din nou intervalul de timp, iar apoi sa îl pornim din nou.
System.Thread.Timer ne permite sa facem in felul urmator:
System.Threading.Timer timer = new System.Threading.Timer(new TimerCallback(ExecutaCeva), null, 1000,10000);
varianta care o prefer eu este:
System.Threading.Timer timer = new System.Threading.Timer(new TimerCallback(ExecutaCeva), null, TimeSpan.FromSeconds(1), TimeSpan.FromSeconds(10));
Este bine de stiut ca orice moment cand apelam metoda Change, timpul pana cand se apeleaza ExecutaCeva se modifica. Daca prima valoare este 0, atunci metoda pentru callback se apeleaza imediat, iar daca este Timer.Infinite atunci timer-ul este disable.
Cand al doilea parametru este 0 sau Timer.Infine, atuci timer-ul se executa o singura data.

Comments

  1. N-am inteles niciodata de ce e nevoie de jdemii de Timeri sau macar de ce nu implementeaza aceeasi interfata.
    O alta solutie, mai .Net 4.0 este sa folosesti Taskuri:
    _cancellationTokenSource = new CancellationTokenSource();
    Task<T>.Factory.StartNew(new Action(()=>Thread.Sleep(timerInterval)),_cancellationTokenSource.Token).ContinueWith(myAction,_cancellationTokenSource.Token);
    Codul asta incepe un task care asteapta timerInterval, apoi executa myAction. Se poate da cancel la toata chestia cu _cancellationTokenSource.Dispose().

    ReplyDelete
  2. Fiecare soi de timer are rostul lui, in anumite cazuri: System.Windows.Forms.Timer e timer-ul "clasic" care foloseste intern functia SetTimer() din WindowsSDK si se bazeaza pe procesarea in message loop a mesajului de WM_TIMER

    - avantaje: e gestionat de sistemul de operare, nu consuma un thread separat (ci in UI thread), e mai simplu de utilizat

    - dezavantaje: rezolutie redusa (55ms pe Win95/08, 10-15ms pe Win2000/XP/Vista etc.), WM_TIMER e un mesaj low priority, deci poate fi procesat cu intarziere daca sunt mesaje mai prioritare in coada; numarul maxim de timere care poate fi creat e limitat (mai mult pe versiunile vechi de Windows, pe cele mai noi limita e destul de mare); trebuie avut grija sa se apeleze Dispose() la sfarsit.

    Celelalte doua clase Timer se bazeaza pe threads, si deja sunt alta mancare de peste. O comparatie buna se gaseste in articolul lui Alex Calvo:
    http://msdn.microsoft.com/en-us/magazine/cc164015.aspx

    ReplyDelete
  3. Tudor: multumesc de link, articolul a fost foarte interesant.
    Siderite: interesant mod de a folosii task-urile. O sa studiez problema zilele astea, cea ce nu imi este clar, daca prin apelul la ContinueWith se continua pe acelasi thread sau pe un thread separat. O sa revin cu mai multe informatii zilele acestea.

    ReplyDelete

Post a Comment

Popular posts from this blog

Windows Docker Containers can make WIN32 API calls, use COM and ASP.NET WebForms

After the last post , I received two interesting questions related to Docker and Windows. People were interested if we do Win32 API calls from a Docker container and if there is support for COM. WIN32 Support To test calls to WIN32 API, let’s try to populate SYSTEM_INFO class. [StructLayout(LayoutKind.Sequential)] public struct SYSTEM_INFO { public uint dwOemId; public uint dwPageSize; public uint lpMinimumApplicationAddress; public uint lpMaximumApplicationAddress; public uint dwActiveProcessorMask; public uint dwNumberOfProcessors; public uint dwProcessorType; public uint dwAllocationGranularity; public uint dwProcessorLevel; public uint dwProcessorRevision; } ... [DllImport("kernel32")] static extern void GetSystemInfo(ref SYSTEM_INFO pSI); ... SYSTEM_INFO pSI = new SYSTEM_INFO(

Azure AD and AWS Cognito side-by-side

In the last few weeks, I was involved in multiple opportunities on Microsoft Azure and Amazon, where we had to analyse AWS Cognito, Azure AD and other solutions that are available on the market. I decided to consolidate in one post all features and differences that I identified for both of them that we should need to take into account. Take into account that Azure AD is an identity and access management services well integrated with Microsoft stack. In comparison, AWS Cognito is just a user sign-up, sign-in and access control and nothing more. The focus is not on the main features, is more on small things that can make a difference when you want to decide where we want to store and manage our users.  This information might be useful in the future when we need to decide where we want to keep and manage our users.  Feature Azure AD (B2C, B2C) AWS Cognito Access token lifetime Default 1h – the value is configurable 1h – cannot be modified

What to do when you hit the throughput limits of Azure Storage (Blobs)

In this post we will talk about how we can detect when we hit a throughput limit of Azure Storage and what we can do in that moment. Context If we take a look on Scalability Targets of Azure Storage ( https://azure.microsoft.com/en-us/documentation/articles/storage-scalability-targets/ ) we will observe that the limits are prety high. But, based on our business logic we can end up at this limits. If you create a system that is hitted by a high number of device, you can hit easily the total number of requests rate that can be done on a Storage Account. This limits on Azure is 20.000 IOPS (entities or messages per second) where (and this is very important) the size of the request is 1KB. Normally, if you make a load tests where 20.000 clients will hit different blobs storages from the same Azure Storage Account, this limits can be reached. How we can detect this problem? From client, we can detect that this limits was reached based on the HTTP error code that is returned by HTTP