Skip to main content

Programare paralela in .NET 4.0

Plecam de la premiza ca avem o metoda care executa acelasi cod pentru fiecare element dintr-o colectie:
public bool CheckItem(Item item)
{
...
}
In mod natural am scrie:
foreach (Item item in items)
{
item.IsValid = CheckItem(item);
}

sau
items.ForEach(item=>CheckItem(item));
Am putea sa rulam paralel acest cod foarte usor, daca ne folosim de clasa ajutatoare Parallel:
Parallel.ForEach(items,new Action(item=>CheckItem(item)));
O varianta mai simpla in acest caz este sa scriem direct:
Parallel.ForEach(items,CheckItem);
Daca vrem sa parcurgem doar o parte din colectie putem sa scriem in felul urmator:
Parallel.For(0, 3, new Action(index => CheckItem(items[index])));
Atentie, daca lucrati cu stream-uri sau baze de date trebuie avut grija la close si dispose.
Problema este ceea ce se petrece in spate. N threaduri sunt folosite pentru linia de cod scrisa mai sus. Daca suntem pe client side, acest lucru nu este atat de important, dar daca suntem pe partea de server, putem avea mari probleme. De exemplu putem sa ajunge sa avem toate threadurile din pool folosite. Aceasta problema apare din cauza ca pentru fiecare request care vine prin WCF sau HTTP poate sa porneasca N threaduri. Din punct de vedere a scalabilității aici pot sa apara mari problem( vezi P.S. de la sfîrșitul postului).
public async Task CheckItem(ITempDataProvider item)
{
...
}
Task.Factory.ContinueWhenAll(
from item in items select CheckItem(item),
endTask => NotifyWaiter());
Pentru a putea face acest lucru aveti nevoie de Async CTP instalat. Acesta in spate apeleaza asyncron pentru fiecare item in parte metoda CheckItem. Keywordul async ii spune compilatorului ca acesta metoda o sa fie apelata asyncron. Iar ContinueWhenAll creaza un task care o sa fie rulat la sfarsitul executiei listei de taskuri specificate.
Async CTP
O alta varianta este sa folosim
WithDegreeOfParallelism. Aceasta ne permite sa specificam numarul de threaduri care pot sa ruleze paralel prin intermediul limbajului PLINQ
P.S.: Am ajuns sa scriu acest post in momentul in care am scris un cod server side care folosea Parallel.ForEach pentru a prelucra un request de la client si am ajuns doar prin cateva requesturi sa ocup peste 200MB din memorie.

Comments

Popular posts from this blog

Windows Docker Containers can make WIN32 API calls, use COM and ASP.NET WebForms

After the last post , I received two interesting questions related to Docker and Windows. People were interested if we do Win32 API calls from a Docker container and if there is support for COM. WIN32 Support To test calls to WIN32 API, let’s try to populate SYSTEM_INFO class. [StructLayout(LayoutKind.Sequential)] public struct SYSTEM_INFO { public uint dwOemId; public uint dwPageSize; public uint lpMinimumApplicationAddress; public uint lpMaximumApplicationAddress; public uint dwActiveProcessorMask; public uint dwNumberOfProcessors; public uint dwProcessorType; public uint dwAllocationGranularity; public uint dwProcessorLevel; public uint dwProcessorRevision; } ... [DllImport("kernel32")] static extern void GetSystemInfo(ref SYSTEM_INFO pSI); ... SYSTEM_INFO pSI = new SYSTEM_INFO(

Azure AD and AWS Cognito side-by-side

In the last few weeks, I was involved in multiple opportunities on Microsoft Azure and Amazon, where we had to analyse AWS Cognito, Azure AD and other solutions that are available on the market. I decided to consolidate in one post all features and differences that I identified for both of them that we should need to take into account. Take into account that Azure AD is an identity and access management services well integrated with Microsoft stack. In comparison, AWS Cognito is just a user sign-up, sign-in and access control and nothing more. The focus is not on the main features, is more on small things that can make a difference when you want to decide where we want to store and manage our users.  This information might be useful in the future when we need to decide where we want to keep and manage our users.  Feature Azure AD (B2C, B2C) AWS Cognito Access token lifetime Default 1h – the value is configurable 1h – cannot be modified

What to do when you hit the throughput limits of Azure Storage (Blobs)

In this post we will talk about how we can detect when we hit a throughput limit of Azure Storage and what we can do in that moment. Context If we take a look on Scalability Targets of Azure Storage ( https://azure.microsoft.com/en-us/documentation/articles/storage-scalability-targets/ ) we will observe that the limits are prety high. But, based on our business logic we can end up at this limits. If you create a system that is hitted by a high number of device, you can hit easily the total number of requests rate that can be done on a Storage Account. This limits on Azure is 20.000 IOPS (entities or messages per second) where (and this is very important) the size of the request is 1KB. Normally, if you make a load tests where 20.000 clients will hit different blobs storages from the same Azure Storage Account, this limits can be reached. How we can detect this problem? From client, we can detect that this limits was reached based on the HTTP error code that is returned by HTTP