Skip to main content

Covarianta si contravarianta in .NET 4.0

Covarianta si contravarinata au existat de la .NET 1.0. Schimbarea pe care a adus-o .NET 4.0 a fost ca a introdus aceste funcționalități si in tipurile generice.
In teorie, un tip T este mai mare decat S, daca si numai daca S este un subtip( derivat) din T.
Din acest enunt putem sa ajungem la concluzia ca exista o oarecare unitate de masura prin care se pot descrie tipurile( in forma unui arbore). Putem sa consideram ca T este clasa de baza, iar S este clasa derivata.
Covarianta: daca Generic este mai mare sau egal decat Generic. Covarianta se folosește in special cand vrem ca de la ceva generic sa ajungem la ceva mai particular.
Covarianta ne permite sa tratam un obiect ca si cum ar fi mai sus in ierarhie. Din aceasta cauza se ajunge ca proprietățile sa fie read-only din tipul generic.
De exemplu daca avem un tip de baza Animal si doua clase care moștenesc aceasta clasa( Caine, Sarpe), in mod normal nu am putea sa avem:
public class Animal{}
public class Caine:Animal{}
public class Sarpe:Animal{}

public interface IBox<TAnimal>
{
TAnimal Obiect { get; }
}
...
IBox<Caine> caineBox = null;
IBox<Animal> animalBox = caineBox;
Pentru a putea face acest lucru avem nevoie de:
public interface IBox
{
TAnimal Obiect { get; }
}
Trebue sa tinem cont ca covarianta nu ne permite sa avem:

  • setter pe proprietatea Obiect;
  • o metoda care sa aibe ca parametru de intrare un parametru de tip TAnimal;
  • o metoda care sa aibe ca parametru de intrare un parametru de tip referinta(ref) de tip TAnimal;
Putem sa avem in schimb o metoda ce returneaza tipul TAnimal.
interface IBox
{
TAnimal GetAnimal(); // permis
void Proceseaza(TAnimal value); // nu este permis
void Schimba(ref TAnimal reference); // nu este permis

TAnimal Obiect
{
get; // permis
set; // nu este permis
}
}
Contravarianta: daca Generic este mai mic sau egal decat Generic. Contravarianta se folosește cand vrem ca de la un tip particular sa ajungem la un tip generic. Prin acest mecanism putem sa setam valori in clasa generica.
Contravarianta apare in momentul in care vrem sa avem ceva de genul:
public interface IBox
{
void Adauga(TAnimal animal);
}
...
IBox animalBox = Init();
animalBox.Adauga(new Sarpe());
Operatiile care nu sunt permise pentru contravarianta sunt:
  • o metoda nu poate returna un obiect de tip TAnimal;
  • o metoda nu poate sa accepte ca parametru de intrare un parametru de tip referinta(ref);
interface IBox
{
TAnimal GetAnimal(); // nu este permis
void Proceseaza(TAnimal value); // permis
void Schimba(ref TAnimal reference); // nu este permis

TAnimal Obiect
{
get; // nu este permis
set; // este permis
}
}
Este bine de stiut faptul ca contravarianta poate fi folosita cand este nevoie de nevoie de trecerea de la ceva mai particular la ceva mai generic. Covarianta este asemanatoare cu READ ONLY iar contravarianta cu WRITE ONLY.
Pentru mai multe informatii: http://community.devexpress.com/blogs/paulk/archive/2010/06/18/covariance-and-contravariance-in-net-4-0.aspx
O prezentare foarte interesanta: http://blog.mbharrington.org/2011/02/21/covariance-and-contravariance-in-net-4/

Comments

Popular posts from this blog

Windows Docker Containers can make WIN32 API calls, use COM and ASP.NET WebForms

After the last post , I received two interesting questions related to Docker and Windows. People were interested if we do Win32 API calls from a Docker container and if there is support for COM. WIN32 Support To test calls to WIN32 API, let’s try to populate SYSTEM_INFO class. [StructLayout(LayoutKind.Sequential)] public struct SYSTEM_INFO { public uint dwOemId; public uint dwPageSize; public uint lpMinimumApplicationAddress; public uint lpMaximumApplicationAddress; public uint dwActiveProcessorMask; public uint dwNumberOfProcessors; public uint dwProcessorType; public uint dwAllocationGranularity; public uint dwProcessorLevel; public uint dwProcessorRevision; } ... [DllImport("kernel32")] static extern void GetSystemInfo(ref SYSTEM_INFO pSI); ... SYSTEM_INFO pSI = new SYSTEM_INFO(

Azure AD and AWS Cognito side-by-side

In the last few weeks, I was involved in multiple opportunities on Microsoft Azure and Amazon, where we had to analyse AWS Cognito, Azure AD and other solutions that are available on the market. I decided to consolidate in one post all features and differences that I identified for both of them that we should need to take into account. Take into account that Azure AD is an identity and access management services well integrated with Microsoft stack. In comparison, AWS Cognito is just a user sign-up, sign-in and access control and nothing more. The focus is not on the main features, is more on small things that can make a difference when you want to decide where we want to store and manage our users.  This information might be useful in the future when we need to decide where we want to keep and manage our users.  Feature Azure AD (B2C, B2C) AWS Cognito Access token lifetime Default 1h – the value is configurable 1h – cannot be modified

What to do when you hit the throughput limits of Azure Storage (Blobs)

In this post we will talk about how we can detect when we hit a throughput limit of Azure Storage and what we can do in that moment. Context If we take a look on Scalability Targets of Azure Storage ( https://azure.microsoft.com/en-us/documentation/articles/storage-scalability-targets/ ) we will observe that the limits are prety high. But, based on our business logic we can end up at this limits. If you create a system that is hitted by a high number of device, you can hit easily the total number of requests rate that can be done on a Storage Account. This limits on Azure is 20.000 IOPS (entities or messages per second) where (and this is very important) the size of the request is 1KB. Normally, if you make a load tests where 20.000 clients will hit different blobs storages from the same Azure Storage Account, this limits can be reached. How we can detect this problem? From client, we can detect that this limits was reached based on the HTTP error code that is returned by HTTP