Skip to main content

How to write unit-tests for async methods


All developer that works with .NET heard about Task, async, await – Task Parallel Library (TPL). Great library when we need to write code that runs in parallel.
With TPL, writing code that run in parallel is pretty simple. This is great, but of course, all code that run in parallel need to be tested also – unit tests. Do you know how you need to write unit tests for async calls?
I so pretty strange way of unit tests for async methods. Some of them were ugly and complicated. Why? Because the unit test method is a sync one and there we try to run and wait a response from an async call. This is why we can end up with something like this:
        [TestMethod]
        public void MoveFile_ExistingFile_ResultsFileMovedAndOriginalFileDeleted()
        {                        
            StorageFolder destinationFolder = null;
                        
            Task.Run(() => destinationFolder = 
                                CreateFolderAsync(_originalFolder).Result)
                                  .Wait();
            
            var fileToMove = StorageHelper.CreateFile(_originalFolder,FileName);

            Task.Run(() =>  _fileManipulator.MoveFileAsync(fileToMove, destinationFolder))
                                  .Wait();

            Assert.IsTrue(_fileManipulator.Exist(destinationFolder, FileName));
            Assert.IsFalse(_fileManipulator.Exist(_originalFolder, FileName));
        }   
or
        private void SaveContent(byte[] originalContent)
        {
            Task saveTask = Task.Run(() => _applicationFileManager
                                  .SaveAsync(FileName, originalContent));
            saveTask.Wait();

        }
What do you thing? Do you like to have in the unit tests calls to Task.Run(). Personal I don’t like this and for me is a big smell. Something we are doing wrong, we are missing something.
What we are missing is the way we are writing the unit test method. By default, when we are wring a unit test we define the unit test method in this way:
[TestMethod]
public void SomeTest() { }
This is okay for testing a sync call. But when testing async call we have more option. It would be nice to be able to have our test method as an async method. In this way we don’t need to call Task.Run().
The reality is that we can define a test method like this:
[TestMethod]
public async Task SomeTest() { }
Doing this we can call our async method as a normal method and test accordingly.
        [TestMethod]
        public async Task MoveFile_ExistingFile_ResultsFileMovedAndOriginalFileDeleted()
        {                      
            StorageFolder destinationFolder = null;
                     
           destinationFolder = await CreateFolderAsync(_originalFolder)
         
            var fileToMove = StorageHelper.CreateFile(_originalFolder,FileName);

            await _fileManipulator.MoveFileAsync(fileToMove, destinationFolder);

            Assert.IsTrue(_fileManipulator.Exist(destinationFolder, FileName));
            Assert.IsFalse(_fileManipulator.Exist(_originalFolder, FileName));
        }
This feature works only on Visual Studio 2012.
On Visual Studio 2010 we need to install a NuGet package called AsyncUnitTests-MSTest. This will allow us to use async and await in our unit test. We will need to replace the TestClass attribute with AsyncTestClass. This attribute is able to run normal tests also.

In this post we saw how easily we can run unit tests for async code, without having to hack our calls.

Comments

  1. Indeed, also NUnit (>= 2.6.2) and XUnit.net (>= 1.9) have support for async tests.

    ReplyDelete

Post a Comment

Popular posts from this blog

Windows Docker Containers can make WIN32 API calls, use COM and ASP.NET WebForms

After the last post , I received two interesting questions related to Docker and Windows. People were interested if we do Win32 API calls from a Docker container and if there is support for COM. WIN32 Support To test calls to WIN32 API, let’s try to populate SYSTEM_INFO class. [StructLayout(LayoutKind.Sequential)] public struct SYSTEM_INFO { public uint dwOemId; public uint dwPageSize; public uint lpMinimumApplicationAddress; public uint lpMaximumApplicationAddress; public uint dwActiveProcessorMask; public uint dwNumberOfProcessors; public uint dwProcessorType; public uint dwAllocationGranularity; public uint dwProcessorLevel; public uint dwProcessorRevision; } ... [DllImport("kernel32")] static extern void GetSystemInfo(ref SYSTEM_INFO pSI); ... SYSTEM_INFO pSI = new SYSTEM_INFO(...

How to audit an Azure Cosmos DB

In this post, we will talk about how we can audit an Azure Cosmos DB database. Before jumping into the problem let us define the business requirement: As an Administrator I want to be able to audit all changes that were done to specific collection inside my Azure Cosmos DB. The requirement is simple, but can be a little tricky to implement fully. First of all when you are using Azure Cosmos DB or any other storage solution there are 99% odds that you’ll have more than one system that writes data to it. This means that you have or not have control on the systems that are doing any create/update/delete operations. Solution 1: Diagnostic Logs Cosmos DB allows us activate diagnostics logs and stream the output a storage account for achieving to other systems like Event Hub or Log Analytics. This would allow us to have information related to who, when, what, response code and how the access operation to our Cosmos DB was done. Beside this there is a field that specifies what was th...

Cloud Myths: Cloud is Cheaper (Pill 1 of 5 / Cloud Pills)

Cloud Myths: Cloud is Cheaper (Pill 1 of 5 / Cloud Pills) The idea that moving to the cloud reduces the costs is a common misconception. The cloud infrastructure provides flexibility, scalability, and better CAPEX, but it does not guarantee lower costs without proper optimisation and management of the cloud services and infrastructure. Idle and unused resources, overprovisioning, oversize databases, and unnecessary data transfer can increase running costs. The regional pricing mode, multi-cloud complexity, and cost variety add extra complexity to the cost function. Cloud adoption without a cost governance strategy can result in unexpected expenses. Improper usage, combined with a pay-as-you-go model, can result in a nightmare for business stakeholders who cannot track and manage the monthly costs. Cloud-native services such as AI services, managed databases, and analytics platforms are powerful, provide out-of-the-shelve capabilities, and increase business agility and innovation. H...