Skip to main content

Adnotare enum cu mai multe valori

Cand dorim sa serializam un enum putem sa atasam la valoarea fiecarui item din enum atributul XmlEnumAttribute. Astfel la serializare/deserializare o sa putem lucra cu o valoarea string nu cu o valoare numerica.
Pana aici nici o problema, dar cum facem sa obtinem doar aceasta valoarea si nu un xml care contine si aceasta valoarea . De exemplu pentru enum-ul:
public enum Dimension
{
[XmlEnum(Name="BigT")]
Big
[XmlEnum(Name="SmallT")]
Small
}

am obține folosindu-ne de XmlSerializer un output care contine si un nod care specifica ce tip de data ii. Pentru a putea sa obtinem doar valoare BigT sau SmallT putem sa apelam la reflection si sa iteram prin atributele item-ului respectiv pana ajungem la un atribut de tip XmlEnumAttribute.
Acuma, daca ducem problema umpic mai departe, putem sa ajungem la cazuri in care elementele din enum au diferite valori. De exemplu daca lucram cu doua sau mai multe aplicații, putem sa avem doua sau mai multe reprezentări pentru aceiasi valoare. De exemplu o aplicație poate sa isi noteze valoare Big cu BigT, iar alta cu BigState. La prima strigare putem sa scriem un swith, iar in funcție de sistemul de unde preluam sau trimitem date sa avem o anumita valoare.
O solutie mai generala este sa scriem doua metode care sa stie sa convertească un string intr-un enum in functie de valoarea atributelor cu care adnotam un anumit item din enum. De exemplu in exemplul dat mai sus putem sa avem:
public enum Dimension
{
[FirstSystem("BigT")]
[SecondSystem("BigState")]
Big
[FirstSystem(Name="SmallT")]
[SecondSystem("SmallState")]
Small
}
In felul acesta, putem sa avem oricate valori pentru un anum. Atributele custom pe care le-am definit trebuie sa mosteneasca din clasa XmlEnumAttribute. Se poate scrie si un atribut custom, dar am folosit aceasta clasa deoarece deja continea o valoare de tip string.
Mai jos gasiti doua metode care ne permit sa convertim un enum in string si viceversa pe baza atributelor. Pentru a putea obtine valorea unui atribut este nevoie sa iteram prin toata lista de atribute pana ajungem la atributul pe care noi il dorim.
 public static string GetAttributeValue<TAttribute>(Enum @enum)
where TAttribute: XmlEnumAttribute
{
Type enumType = @enum.GetType();
Type attributeType = typeof (TAttribute);
FieldInfo info = enumType.GetField(@enum.ToString("G"));
if (!info.IsDefined(typeof(XmlEnumAttribute), false))
{
return @enum.ToString("G");
}

foreach (var customAttribute in info.GetCustomAttributes(attributeType, false))
{
if (customAttribute.GetType() == attributeType)
{
XmlEnumAttribute attribute = (XmlEnumAttribute)customAttribute;
return attribute.Name;
}
}

throw new Exception("The given attribute could not be found.");
}


public static TEnum GetEnumByAttributeValue<TEnum,TAttribute>(string value)
where TAttribute: XmlEnumAttribute
{
Type enumType = typeof(TEnum);

foreach (var item in Enum.GetValues(enumType))
{
if(GetAttributeValue<TAttribute>((Enum)item)==value)
{
return (TEnum)Enum.Parse(enumType, item.ToString());
}
}

throw new IndexOutOfRangeException(string.Format("The {0} attribute value cannot be found on the {1} enum", value, enumType.Name));
}

Comments

Popular posts from this blog

How to audit an Azure Cosmos DB

In this post, we will talk about how we can audit an Azure Cosmos DB database. Before jumping into the problem let us define the business requirement: As an Administrator I want to be able to audit all changes that were done to specific collection inside my Azure Cosmos DB. The requirement is simple, but can be a little tricky to implement fully. First of all when you are using Azure Cosmos DB or any other storage solution there are 99% odds that you’ll have more than one system that writes data to it. This means that you have or not have control on the systems that are doing any create/update/delete operations. Solution 1: Diagnostic Logs Cosmos DB allows us activate diagnostics logs and stream the output a storage account for achieving to other systems like Event Hub or Log Analytics. This would allow us to have information related to who, when, what, response code and how the access operation to our Cosmos DB was done. Beside this there is a field that specifies what was th...

Why Database Modernization Matters for AI

  When companies transition to the cloud, they typically begin with applications and virtual machines, which is often the easier part of the process. The actual complexity arises later when databases are moved. To save time and effort, cloud adoption is more of a cloud migration in an IaaS manner, fulfilling current, but not future needs. Even organisations that are already in the cloud find that their databases, although “migrated,” are not genuinely modernised. This disparity becomes particularly evident when they begin to explore AI technologies. Understanding Modernisation Beyond Migration Database modernisation is distinct from merely relocating an outdated database to Azure. It's about making your data layer ready for future needs, like automation, real-time analytics, and AI capabilities. AI needs high throughput, which can be achieved using native DB cloud capabilities. When your database runs in a traditional setup (even hosted in the cloud), in that case, you will enc...

Cloud Myths: Migrating to the cloud is quick and easy (Pill 2 of 5 / Cloud Pills)

The idea that migration to the cloud is simple, straightforward and rapid is a wrong assumption. It’s a common misconception of business stakeholders that generates delays, budget overruns and technical dept. A migration requires laborious planning, technical expertise and a rigorous process.  Migrations, especially cloud migrations, are not one-size-fits-all journeys. One of the most critical steps is under evaluation, under budget and under consideration. The evaluation phase, where existing infrastructure, applications, database, network and the end-to-end estate are evaluated and mapped to a cloud strategy, is crucial to ensure the success of cloud migration. Additional factors such as security, compliance, and system dependencies increase the complexity of cloud migration.  A misconception regarding lift-and-shits is that they are fast and cheap. Moving applications to the cloud without changes does not provide the capability to optimise costs and performance, leading to ...