AI is everywhere, part of the IT solutions we build and run today. Having an AI service, a good model, and data is not enough. As for cloud, the real difference is how we build, manage and run the whole solution. Microsoft created the Azure Well-Architected Framework for AI Workloads exactly for this reason — to help teams design AI systems that are reliable, secure, and cost-efficient. The assessment has six main categories that we cover in the next section. Based on the results, we can gain a good understanding of the current AI workload estate and a list of actions to improve how you run and manage your AI workloads . Designing the AI Application The first step in building your AI application is to consider how you will structure it. Using containers for tasks like data processing or model inference helps maintain consistency across the system. This approach makes it easier to update, move, and manage different components. When you have multiple steps in your workflow, such as...
DREAMER, CRAFTER, TECHNOLOGY ENTHUSIAST, SPEAKER, TRAINER, AZURE MVP, SOLVING HARD BUSINESS PROBLEMS WITH CUTTING-EDGE TECHNOLOGY