Skip to main content

IoT Home Automation | Basic plant watering system

Almost 3 months past without working on the own IoT home solution. In the meantime, I was able to lose the UI implementation. Because of this in the next 1-2 weeks, I will try to rewrite it.
The previous post about my IoT solution: IoT Home Automation | Stabilize the garage doors solution after power break (resistors and capacitors) http://vunvulearadu.blogspot.ro/2018/02/iot-home-automation-stabilize-garage.html

Because summer holidays are here and I didn't want to bother my neighbors to water the flowers I decided to come up with a fast and cheap solution based on ESP8266. For grass I already have an automation solution from Gardena, but if you can do it yourself why not. Especially if you take into account the price of Gardena controller.

The first version is pretty basic, from the features perspective. No internet connection, no reporting, no humidity sensors and other stuff like this. Lack of time forced me to keep things super necessary, but I've replicated 100% the Gardena controller with less than 10 euros.
The pipes and connectors are another stories from the cost perspective, but you cannot avoid this. I highly recommend to use high-quality water tube connectors.
I just added a timer and every 12 hours I open different water circuits for 4 minutes or 30 seconds.

#include <Arduino.h>
#include <ESP8266WiFi.h>
#include <ESP8266HTTPClient.h>
#include <time.h>

#ifdef ESP8266
extern "C" {
#include "user_interface.h"
}
#endif

#define DEFAULT_TIME_MS_1 4*60*1000
#define DEFAULT_TIME_MS_2   30*1000
#define DEFAULT_TIME_SLEEP (12*60*60*1000)-DEFAULT_TIME_MS_1-DEFAULT_TIME_MS_2

void setup() {
  pinMode(D1, OUTPUT);
  pinMode(D3, OUTPUT);
    
  // This is required to read ADC values reliably
  wifi_set_sleep_type(NONE_SLEEP_T);
  
  Serial.begin(57600); 
  
  // Delay is required only for debugging
  delay(2000);
  Serial.println("Setup complete");
  
  WiFi.mode(WIFI_STA);
}
void loop() {
  Serial.println("Open Valve 1:");
  Serial.println(DEFAULT_TIME_MS_1);
  triggerValve(1, DEFAULT_TIME_MS_1);
  Serial.println("Close Valve 1:");

  Serial.println("Open Valve 2:");
  Serial.println(DEFAULT_TIME_MS_2);
  triggerValve(2, DEFAULT_TIME_MS_2);
  Serial.println("Close Valve 2:");

  Serial.println("Sleep for the next 12h");
  Serial.println(DEFAULT_TIME_SLEEP);
  delay(DEFAULT_TIME_SLEEP);
}


void triggerValve(int gateNumber, int openDuration){
  Serial.println("Open Relay"); 
  digitalWrite(D(gateNumber), HIGH);    
  delay(openDuration);
  Serial.println("Close Relay");
  digitalWrite(D(gateNumber), LOW);    
}

uint8_t D(uint8_t index) {
  switch (index) {
    case 1: return D1;
    case 2: return D3;
  }
}  
As you can see, I reset the ESP8266 every 12h automatically. This is something temporary until I'm able to connect to the internet and add some new features.
As you can see the code is super simple, in the lack of time and a UI for my previous solution, I kept things pretty simple. Most of the time was invested in the hardware part - especially water tubes.
Once I recreate the UI, I want to be able to push custom time intervals to the controller and to be able to add reporting capabilities.
Even if I have some humidity sensors, I am not interested to integrate them, especially because I would need around 4 different sensors and the idea of having too many cables is not so appealing for me.

Comments

Popular posts from this blog

Windows Docker Containers can make WIN32 API calls, use COM and ASP.NET WebForms

After the last post , I received two interesting questions related to Docker and Windows. People were interested if we do Win32 API calls from a Docker container and if there is support for COM. WIN32 Support To test calls to WIN32 API, let’s try to populate SYSTEM_INFO class. [StructLayout(LayoutKind.Sequential)] public struct SYSTEM_INFO { public uint dwOemId; public uint dwPageSize; public uint lpMinimumApplicationAddress; public uint lpMaximumApplicationAddress; public uint dwActiveProcessorMask; public uint dwNumberOfProcessors; public uint dwProcessorType; public uint dwAllocationGranularity; public uint dwProcessorLevel; public uint dwProcessorRevision; } ... [DllImport("kernel32")] static extern void GetSystemInfo(ref SYSTEM_INFO pSI); ... SYSTEM_INFO pSI = new SYSTEM_INFO(...

How to audit an Azure Cosmos DB

In this post, we will talk about how we can audit an Azure Cosmos DB database. Before jumping into the problem let us define the business requirement: As an Administrator I want to be able to audit all changes that were done to specific collection inside my Azure Cosmos DB. The requirement is simple, but can be a little tricky to implement fully. First of all when you are using Azure Cosmos DB or any other storage solution there are 99% odds that you’ll have more than one system that writes data to it. This means that you have or not have control on the systems that are doing any create/update/delete operations. Solution 1: Diagnostic Logs Cosmos DB allows us activate diagnostics logs and stream the output a storage account for achieving to other systems like Event Hub or Log Analytics. This would allow us to have information related to who, when, what, response code and how the access operation to our Cosmos DB was done. Beside this there is a field that specifies what was th...

Cloud Myths: Cloud is Cheaper (Pill 1 of 5 / Cloud Pills)

Cloud Myths: Cloud is Cheaper (Pill 1 of 5 / Cloud Pills) The idea that moving to the cloud reduces the costs is a common misconception. The cloud infrastructure provides flexibility, scalability, and better CAPEX, but it does not guarantee lower costs without proper optimisation and management of the cloud services and infrastructure. Idle and unused resources, overprovisioning, oversize databases, and unnecessary data transfer can increase running costs. The regional pricing mode, multi-cloud complexity, and cost variety add extra complexity to the cost function. Cloud adoption without a cost governance strategy can result in unexpected expenses. Improper usage, combined with a pay-as-you-go model, can result in a nightmare for business stakeholders who cannot track and manage the monthly costs. Cloud-native services such as AI services, managed databases, and analytics platforms are powerful, provide out-of-the-shelve capabilities, and increase business agility and innovation. H...