Skip to main content

(Part 5) Testing the limits of Windows Azure Service Bus


In the last series of post about testing the limits of Windows Azure Service Bus we saw what is the best configuration for our problem, the best configuration is to have 4 medium instances.
The next question for us is: How we can decrease the time processing?
In our case we saw that from the cost and benefits perspective we reached the limitation on Service Bus. This is around 4 medium instances that are able to process around  1.000.000 messages in 34 minutes. But what we can do if we have 10.000.000 messages that needs to be processed in 1 hour.
We could increase the number of instances, but this will not improve our performance too much. In this moment we use only one topic. This topic, as Service Bus, has its own limitations – we cannot make an undefined number of request per second and expect to have a low latency.
A solution to decrease the number of request is to use batches – we already use them.
Another solution is to scale the topics. In this moment we have only one topic. If we would use 5 topics, than we could have 4 instances that will consume messages for each topic. In this way we could consume 5.000.000 messages in 34 minutes. The downside is from the cost perspective. The costs will increase with a 5X factor.
From the cost perceptive, this would be acceptable because all the instances work at maximum capacity. In the moment when we don’t need any more this instances we could stop them.
The only problem is how we can distribute the messages between different topics.
One solution would be to identify different attributes of our messages and try to group messages based on this attributes. In this way we could distributed the messages on more than one topic. In theory this could be a good solution, but how many times you could group items in an equal way. In real life this cannot be accomplish in normal cases.
What we could do is to create a mechanism that can select what topic to use. For example each producer, at a specific time interval or after he send a specific number of messages, check what is the load on each topic and decide what topic should be used.
In this way we could have a flat distribution of messages over our topics.
In this post we saw how we can scale on horizontal Windows Azure Service Bus. With a good design we should be able to support scaling in all the locations where we expect to have a bottleneck.

Comments

Popular posts from this blog

Windows Docker Containers can make WIN32 API calls, use COM and ASP.NET WebForms

After the last post , I received two interesting questions related to Docker and Windows. People were interested if we do Win32 API calls from a Docker container and if there is support for COM. WIN32 Support To test calls to WIN32 API, let’s try to populate SYSTEM_INFO class. [StructLayout(LayoutKind.Sequential)] public struct SYSTEM_INFO { public uint dwOemId; public uint dwPageSize; public uint lpMinimumApplicationAddress; public uint lpMaximumApplicationAddress; public uint dwActiveProcessorMask; public uint dwNumberOfProcessors; public uint dwProcessorType; public uint dwAllocationGranularity; public uint dwProcessorLevel; public uint dwProcessorRevision; } ... [DllImport("kernel32")] static extern void GetSystemInfo(ref SYSTEM_INFO pSI); ... SYSTEM_INFO pSI = new SYSTEM_INFO(

Azure AD and AWS Cognito side-by-side

In the last few weeks, I was involved in multiple opportunities on Microsoft Azure and Amazon, where we had to analyse AWS Cognito, Azure AD and other solutions that are available on the market. I decided to consolidate in one post all features and differences that I identified for both of them that we should need to take into account. Take into account that Azure AD is an identity and access management services well integrated with Microsoft stack. In comparison, AWS Cognito is just a user sign-up, sign-in and access control and nothing more. The focus is not on the main features, is more on small things that can make a difference when you want to decide where we want to store and manage our users.  This information might be useful in the future when we need to decide where we want to keep and manage our users.  Feature Azure AD (B2C, B2C) AWS Cognito Access token lifetime Default 1h – the value is configurable 1h – cannot be modified

What to do when you hit the throughput limits of Azure Storage (Blobs)

In this post we will talk about how we can detect when we hit a throughput limit of Azure Storage and what we can do in that moment. Context If we take a look on Scalability Targets of Azure Storage ( https://azure.microsoft.com/en-us/documentation/articles/storage-scalability-targets/ ) we will observe that the limits are prety high. But, based on our business logic we can end up at this limits. If you create a system that is hitted by a high number of device, you can hit easily the total number of requests rate that can be done on a Storage Account. This limits on Azure is 20.000 IOPS (entities or messages per second) where (and this is very important) the size of the request is 1KB. Normally, if you make a load tests where 20.000 clients will hit different blobs storages from the same Azure Storage Account, this limits can be reached. How we can detect this problem? From client, we can detect that this limits was reached based on the HTTP error code that is returned by HTTP