Skip to main content

Short brief - Request-Response, Asynchron and Fire and Forget patterns

Un apel spre un serviciu poate sa fie facut in diferite moduri. Cele mai uzuale moduri sunt cele care respecta paternul Request-Response si Asynchron. Pe langa aceste doua paternuri mai exista inca unul, dar care este mai rar folosit Fire and Forget.
Request-Response pattern- se refera la faptul ca pentru fiecare request facut se asteapta raspunsul.
Response response = service.CallService(request)
Asynchron pattern - este un patern bazat pe evenimente. Odata ce un apel a fost facut, aplicatia nu asteapta raspunsul de la server. Cel care face apelul trebuie sa se inregistreze la un eveniment care o sa fie declansat cand raspunsul soseste.
service.ResponseEvent += new EventHandler(ResponseReceived);
service.CallServiceAsync(request);
Fire and Forget pattern - este destul de asemanator cu paternul Asynchron, doar ca odata comanda trimisa nu ne mai intereseaza ce se intampla cu aceasta.
service.CalService(request);    // Metoda nu returneaza nimica
Exista diferite scenarii cand Fire and Forget este recomandat sa fie folosit. Conditia principala care trebuie sa fie implinita ca sa putem folostii acest patern este ca sa ne putem asigura ca request-ul ajunge la server - avem un protocol ce ne garanteaza ca mesajele au ajuns la destinatie( de exemplu daca folosim cozi de mesaje care ne asigura ca mesajele nu se pierd - de exemplul MQ).
In cazul in care avem servicii cu un volum mare de request-uri, atunci poate pentru unele tipuri de request-uri putem sa folosim acest patern. De exemplu pentru cele in care rezultatul este format din mesaje precum Okay.
Cele mai mari dezavantaje apar in momentul in care ceva nu functioneaza bine. Debug-ul este destul de complicat si de obicei necesita interventia umana pentru a putea gasi problema. Problemele care pot sa apara sunt la nivelului protocolului care ar trebui sa ne garanteze ca mesajele ajung la destinatie.
Un alt mod de a apela un serviciu este de a face unu sau mai multe request-uri de tipul Fire and Forget, iar apoi la un moment dat sa se verifice daca a venit un raspuns( intr-un cache, in baza de date etc) - in cazul in care raspunsul se pune intr-o locatie unde atat clientul cat si serverul le pot accesa
Nu trebuie confundat un apel de forma:
service.CallService(request,()=>{ ... });
ca si cum ar fi un apel de tip Fire and Forget. Orice metoda sau lambda expresion specificata ca si al doilea parametru care este apelata in momentul in care raspunsul soseste de la server reprezinta un apel de tip asincron.

Comments

Popular posts from this blog

Windows Docker Containers can make WIN32 API calls, use COM and ASP.NET WebForms

After the last post , I received two interesting questions related to Docker and Windows. People were interested if we do Win32 API calls from a Docker container and if there is support for COM. WIN32 Support To test calls to WIN32 API, let’s try to populate SYSTEM_INFO class. [StructLayout(LayoutKind.Sequential)] public struct SYSTEM_INFO { public uint dwOemId; public uint dwPageSize; public uint lpMinimumApplicationAddress; public uint lpMaximumApplicationAddress; public uint dwActiveProcessorMask; public uint dwNumberOfProcessors; public uint dwProcessorType; public uint dwAllocationGranularity; public uint dwProcessorLevel; public uint dwProcessorRevision; } ... [DllImport("kernel32")] static extern void GetSystemInfo(ref SYSTEM_INFO pSI); ... SYSTEM_INFO pSI = new SYSTEM_INFO(

Azure AD and AWS Cognito side-by-side

In the last few weeks, I was involved in multiple opportunities on Microsoft Azure and Amazon, where we had to analyse AWS Cognito, Azure AD and other solutions that are available on the market. I decided to consolidate in one post all features and differences that I identified for both of them that we should need to take into account. Take into account that Azure AD is an identity and access management services well integrated with Microsoft stack. In comparison, AWS Cognito is just a user sign-up, sign-in and access control and nothing more. The focus is not on the main features, is more on small things that can make a difference when you want to decide where we want to store and manage our users.  This information might be useful in the future when we need to decide where we want to keep and manage our users.  Feature Azure AD (B2C, B2C) AWS Cognito Access token lifetime Default 1h – the value is configurable 1h – cannot be modified

What to do when you hit the throughput limits of Azure Storage (Blobs)

In this post we will talk about how we can detect when we hit a throughput limit of Azure Storage and what we can do in that moment. Context If we take a look on Scalability Targets of Azure Storage ( https://azure.microsoft.com/en-us/documentation/articles/storage-scalability-targets/ ) we will observe that the limits are prety high. But, based on our business logic we can end up at this limits. If you create a system that is hitted by a high number of device, you can hit easily the total number of requests rate that can be done on a Storage Account. This limits on Azure is 20.000 IOPS (entities or messages per second) where (and this is very important) the size of the request is 1KB. Normally, if you make a load tests where 20.000 clients will hit different blobs storages from the same Azure Storage Account, this limits can be reached. How we can detect this problem? From client, we can detect that this limits was reached based on the HTTP error code that is returned by HTTP